首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2875篇
  免费   113篇
  国内免费   13篇
  2016年   20篇
  2015年   26篇
  2014年   22篇
  2013年   65篇
  2012年   81篇
  2011年   71篇
  2010年   76篇
  2009年   116篇
  2008年   91篇
  2007年   74篇
  2006年   77篇
  2005年   66篇
  2004年   63篇
  2003年   35篇
  2002年   29篇
  2001年   26篇
  2000年   37篇
  1999年   34篇
  1998年   43篇
  1997年   43篇
  1996年   41篇
  1995年   30篇
  1994年   32篇
  1993年   22篇
  1992年   39篇
  1991年   20篇
  1990年   29篇
  1989年   32篇
  1988年   23篇
  1987年   25篇
  1986年   26篇
  1985年   28篇
  1983年   21篇
  1982年   21篇
  1981年   28篇
  1979年   30篇
  1977年   19篇
  1972年   21篇
  1971年   20篇
  1959年   52篇
  1958年   124篇
  1957年   138篇
  1956年   137篇
  1955年   149篇
  1954年   151篇
  1953年   119篇
  1952年   104篇
  1951年   99篇
  1950年   59篇
  1948年   23篇
排序方式: 共有3001条查询结果,搜索用时 15 毫秒
1.
The revision of the antarctic–subantarctic species Orchomenopsis reducta Schellenberg, 1931, has led to its attribution to a new, highly apomorphic genus: Falklandia gen.n. A new definition of the uristid group is given and Falklandia with 36 other lysianassoid genera are attributed to this supposedly monophyletic group.  相似文献   
2.
3.
4.
5.
In Australia, in the past, pasture legumes were rotated mainly with cereals, but increasingly these rotations now involve pasture legumes with a wider range of crops, including legumes. This increasing frequency of the leguminous host in the rotation system may be associated with increased root rots in legumes in the current pasture-crop rotations. The primary aim of this study was to see whether the pathogenicity on pasture legumes of strains of Rhizoctonia solani sourced from lupins and cereals (common crops in rotation with pastures) is associated with increased incidence of root rots in pasture legumes in the disease conducive sandy soils of the Mediterranean regions of southern Australia. The second aim was to determine sources of resistance among newly introduced pasture legumes to R. solani strains originating from rotational crops as this would reduce the impact of disease in the pasture phase. Fifteen pasture legume genotypes were assessed for their resistance/susceptibility to five different zymogram groups (ZG) of the root rot pathogen R. solani under glasshouse conditions. Of the R. solani groups tested, ZG1–5 and ZG1–4 (both known to be pathogenic on cereals and legumes) overall, caused the most severe root disease across the genotypes tested, significantly more than ZG6 (known to be pathogenic on legumes), in turn significantly >ZG4 (known to be pathogenic on legumes) which in turn was >ZG11 (known to be pathogenic on legumes including tropical species). Overall, Ornithopus sativus Brot. cvs Cadiz and Margurita, Trifolium michelianum Savi. cvs Paradana and Frontier and T. purpureum Loisel. cv. Electro showed a significant level of resistance to root rot caused by R. solani ZG11 (root disease scores ≤1.2 on a 1–3 scale where 3 = maximum disease severity) while O. sativus cvs Cadiz and Erica showed a significant level of resistance to root rot caused by R. solani ZG4 (scores ≤1.2). O. compressus L. cvs Charano and Frontier, O. sativus cv. Erica, and T. purpureum cv. Electro showed some useful resistance to root rot caused by R. solani ZG6 (scores ≤1.8). This is the first time that cvs Cadiz, Electro, Frontier, Margurita and Paradana have been recognised for their levels of resistance to root rot caused by R. solani ZG11; and similarly for cvs Cadiz and Erica against ZG4; and for cvs Charano, Erica, and Electro against ZG6. These genotypes with resistance may also serve as useful sources of resistance in pasture legume breeding programs and also could potentially be exploited directly into areas where other rotation crops are affected by these R. solani strains. None of the tested genotypes showed useful resistance to R. solani ZG1–4 (scores ≥2.0) or ZG1–5 (scores ≥2.5). This study demonstrates the relative potential of the various R. solani ZG strains, and particularly ZG1–4, ZG1–5, ZG4 and ZG6 to attack legume pastures and pose a significant threat to non-pasture crop species susceptible to these strains grown in rotation with these pasture legumes. Significantly, the cross-pathogenicity of these strains could result in the continuous build-up of inoculum of these strains that may seriously affect the productivity eventually of legumes in all rotations. In particular, when choosing pasture legumes as rotation crops, caution needs to be exercised so that the cultivars deployed are those with the best resistance to the R. solani ZGs most likely to be prevalent at the location.  相似文献   
6.
Root respiration of the tap root forming species Hypochaeris radicata L. was measured during tap root formation. A comparison was made of two subspecies: H. radicata L. ssp. radicata L., a subspecies from relatively rich soils, and H. radicata L. ssp. ericetorum Van Soest, a subspecies from poor acidic soils. Root respiration was high and to a large extent inhibited by hydroxamic acid (SHAM) before the start of the tap root formation, indicating a high activity of an alternative non-phosphorylative electron transport chain. The rate of root respiration was much lower and less sensitive to SHAM when a considerable tap root was present. However, root respiration was also cyanide-resistant when a tap root was present, indicating that the alternative pathway was still present. A decreased rate of root respiration coincided with an increase of the content of storage carbohydrates, mainly in the tap root. The level of reducing sugars was constant throughout the experimental period, and it was concluded that the activity of the alternative oxidative pathway was significant in oxidation of sugars that could not be utilized for purposes like energy production, the formation of intermediates for growth or for storage. Root respiration decreased after the formation of a tap root. This decrease could neither be attributed to a gradual disappearance of the alternative chain, nor to a decreased level of reducing sugars. No differences in respiratory metabolism between the two subspecies have been observed, suggesting that a high activity of the alternative oxidative pathway is not significant in adaptation of the present two subspecies to relatively nutrient-rich or poor soils.  相似文献   
7.
Summary Osteogenesis imperfecta (OI) is a phenotype with clinical and biochemical heterogeneity. We report here that expression of the OI phenotype extends to the level of dermal fibroblast morphology in vitro. Growth characteristics and morphology of control (n=6) and OI cell strains (n=10, representing the four major OI categories, Sillence classification) were compared by measuring the following: (i) days required in culture to reach confluence after plating at uniform density; (ii) cell density at confluence; (iii) width and length of cells (measured on phase contrast micrographs at 300xmagnification). Our results show that: (i) OI fibroblasts take longer (11–27 days, mean 20 days) than control cells (10–19 days, mean 16 days) to reach stationary phase; (ii) all OI phenotypes achieve a lower cell density (0.87x106 cells/P60, range 0.3–1.6x106) at stationary phase relative to control cells (2.2x106 cells/P60, range 1.7–2.6x106; F4,77=56.1, p<0.01, indicating that OI cells are larger than normal). Cell shape (expressed as the width: length ratio) was also abnormal in OI cells. (F4,730=37.6, p<0.01), types I and II OI cells have significantly increased ratios (p<0.01) relative to control, type III, and type IV cells. Intra-group phenotypic heterogeneity was also apparent in the OI categories and also within the control population. These findings confirm deviant morphologic phenotypes in OI dermal fibroblasts and further demonstrate interindividual heterogeneity in the expression of genes that determine size and shape of dermal fibroblasts in both OI and normal donors.Publication No. 84013 from the Montreal Children's Hospital Research Institute  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号