首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14865篇
  免费   1208篇
  国内免费   1327篇
  2024年   35篇
  2023年   205篇
  2022年   489篇
  2021年   792篇
  2020年   560篇
  2019年   642篇
  2018年   618篇
  2017年   432篇
  2016年   601篇
  2015年   955篇
  2014年   1093篇
  2013年   1142篇
  2012年   1349篇
  2011年   1193篇
  2010年   795篇
  2009年   653篇
  2008年   823篇
  2007年   705篇
  2006年   624篇
  2005年   519篇
  2004年   427篇
  2003年   407篇
  2002年   336篇
  2001年   233篇
  2000年   221篇
  1999年   231篇
  1998年   151篇
  1997年   129篇
  1996年   113篇
  1995年   120篇
  1994年   138篇
  1993年   73篇
  1992年   78篇
  1991年   86篇
  1990年   65篇
  1989年   73篇
  1988年   44篇
  1987年   31篇
  1986年   43篇
  1985年   37篇
  1984年   25篇
  1983年   19篇
  1982年   14篇
  1981年   9篇
  1980年   9篇
  1979年   6篇
  1978年   6篇
  1976年   6篇
  1970年   5篇
  1968年   7篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
1.
FAB1/PIKfyve是介导PI(3,5)P2 (磷脂酰肌醇3,5-二磷酸)生物合成的磷酸肌醇激酶。在动物和酵母(Saccharomyces cerevisiae)中, PI(3,5)P2参与调控胞内膜运输, 但在植物中的研究较少。该文通过分析拟南芥(Arabidopsis thaliana) FAB1的T-DNA插入突变体的表型解析PI(3,5)P2的生物学功能。拟南芥FAB1基因家族包含FAB1AFAB1BFAB1CFAB1D四个基因。研究发现, fab1a/b呈现雄配子体致死的表型。利用遗传杂交获得fab1b/c/d三突变体, 发现FAB1BFAB1CFAB1D功能缺失导致根毛相比野生型变短, 经FAB1特异性抑制剂YM201636处理后的野生型中也观察到相似的短根毛表型。此外, fab1b/c/d三突变体中DR5转录水平降低。同时, 外源施加生长素类似物2,4-D和NAA能部分恢复fab1b/c/d植株短根毛的表型, 但fab1b/c/d突变体对生长素转运抑制剂(1-NOA和TIBA)的敏感性与野生型相似。此外, FAB1B/C/D功能缺失使根毛中ROS的含量减少且影响肌动蛋白的表达。上述结果表明, FAB1B/C/D通过调控生长素分布、ROS含量和肌动蛋白的表达影响拟南芥根毛伸长。  相似文献   
2.
Previously, we confirmed that sphingosine kinase 1 (SphK1) inhibition improves sepsis-associated liver injury. High-mobility group box 1 (HMGB1) translocation participates in the development of acute liver failure. However, little information is available on the association between SphK1 and HMGB1 translocation during sepsis-associated liver injury. In the present study, we aimed to explore the effect of SphK1 inhibition on HMGB1 translocation and the underlying mechanism during sepsis-associated liver injury. Primary Kupffer cells and hepatocytes were isolated from SD rats. The rat model of sepsis-associated liver damage was induced by intraperitoneal injection with lipopolysaccharide (LPS). We confirmed that Kupffer cells were the cells primarily secreting HMGB1 in the liver after LPS stimulation. LPS-mediated HMGB1 expression, intracellular translocation, and acetylation were dramatically decreased by SphK1 inhibition. Nuclear histone deacetyltransferase 4 (HDAC4) translocation and E1A-associated protein p300 (p300) expression regulating the acetylation of HMGB1 were also suppressed by SphK1 inhibition. HDAC4 intracellular translocation has been reported to be controlled by the phosphorylation of HDAC4. The phosphorylation of HDAC4 is modulated by CaMKII-δ. However, these changes were completely blocked by SphK1 inhibition. Additionally, by performing coimmunoprecipitation and pull-down assays, we revealed that SphK1 can directly interact with CaMKII-δ. The colocalization of SphK1 and CaMKII-δ was verified in human liver tissues with sepsis-associated liver injury. In conclusion, SphK1 inhibition diminishes HMGB1 intracellular translocation in sepsis-associated liver injury. The mechanism is associated with the direct interaction of SphK1 and CaMKII-δ.Subject terms: Hepatotoxicity, Sepsis  相似文献   
3.
Ren  Xinwei  Tang  Jingchun  Wang  Lan  Liu  Qinglong 《Plant and Soil》2021,462(1-2):561-576
Plant and Soil - To investigate the effects of polystyrene microplastics (PS-beads) on the soil properties, photosynthesis of Flowering Chinese cabbage, the rhizosphere microbial community and...  相似文献   
4.
Cellulases are the key enzymes used in the biofuel industry. A typical cellulase contains a catalytic domain connected to a carbohydrate-binding module (CBM) through a flexible linker. Here we report the structure of an atypical trimodular cellulase which harbors a catalytic domain, a CBM46 domain and a rigid CBM_X domain between them. The catalytic domain shows the features of GH5 family, while the CBM46 domain has a sandwich-like structure. The catalytic domain and the CBM46 domain form an extended substrate binding cleft, within which several tryptophan residues are well exposed. Mutagenesis assays indicate that these residues are essential for the enzymatic activities. Gel affinity electrophoresis shows that these tryptophan residues are involved in the polysaccharide substrate binding. Also, electrostatic potential analysis indicates that almost the entire solvent accessible surface of CelB is negatively charged, which is consistent with the halophilic nature of this enzyme.  相似文献   
5.
An ecosystem service is a benefit derived by humanity that can be traced back to an ecological process. Although ecosystem services related to surface water have been thoroughly described, the relationship between atmospheric water and ecosystem services has been mostly neglected, and perhaps misunderstood. Recent advances in land-atmosphere modeling have revealed the importance of terrestrial ecosystems for moisture recycling. In this paper, we analyze the extent to which vegetation sustains the supply of atmospheric moisture and precipitation for downwind beneficiaries, globally. We simulate land-surface evaporation with a global hydrology model and track changes to moisture recycling using an atmospheric moisture budget model, and we define vegetation-regulated moisture recycling as the difference in moisture recycling between current vegetation and a hypothetical desert world. Our results show that nearly a fifth of annual average precipitation falling on land is from vegetation-regulated moisture recycling, but the global variability is large, with many places receiving nearly half their precipitation from this ecosystem service. The largest potential impacts for changes to this ecosystem service are land-use changes across temperate regions in North America and Russia. Likewise, in semi-arid regions reliant on rainfed agricultural production, land-use change that even modestly reduces evaporation and subsequent precipitation, could significantly affect human well-being. We also present a regional case study in the Mato Grosso region of Brazil, where we identify the specific moisture recycling ecosystem services associated with the vegetation in Mato Grosso. We find that Mato Grosso vegetation regulates some internal precipitation, with a diffuse region of benefit downwind, primarily to the south and east, including the La Plata River basin and the megacities of Sao Paulo and Rio de Janeiro. We synthesize our global and regional results into a generalized framework for describing moisture recycling as an ecosystem service. We conclude that future work ought to disentangle whether and how this vegetation-regulated moisture recycling interacts with other ecosystem services, so that trade-offs can be assessed in a comprehensive and sustainable manner.  相似文献   
6.
7.
Ginsenoside compound K (CK), a rare ginsenoside originating from Panax Ginseng, has been found to possess unique pharmacological activities specifically as anti-cancers. However, the role of cytochrome P450s (CYPs) in the metabolism of CK is unclear. In this study, we screened the CYPs for the metabolism of CK in vitro using human liver microsomes (HLMs) or human recombinant CYPs. The results showed that CK inhibited the enzyme activities of CYP2C9 and CYP3A4 in the HLMs. The Km and Vmax values of CK were 84.20±21.92 μM and 0.28±0.04 nmol/mg protein/min, respectively, for the HLMs; 34.63±10.48 μM and 0.45±0.05 nmol/nmol P450/min, respectively, for CYP2C9; and 27.03±5.04 μM and 0.68±0.04 nmol/nmol P450/min, respectively, for CYP3A4. The IC50 values were 16.00 μM and 9.83 μM, and Ki values were 14.92 μM and 11.42μM for CYP2C9 and CYP3A4, respectively. Other human CYP isoforms, including CYP1A2, CYP2A6, CYP2D6, CYP2E1, and CYP2C19, showed minimal or no effect on CK metabolism. The results suggested that CK was a substrate and also inhibitors for both CYP2C9 and CYP3A4. Patients using CK in combination with therapeutic drugs that are substrates of CYP2C9 and CYP3A4 for different reasons should be careful, although the inhibiting potency of CK is much poorer than that of enzyme-specific inhibitors.  相似文献   
8.
9.
Over the last decades, production of microalgae and cyanobacteria has been developed for several applications, including novel foods, cosmetic ingredients and more recently biofuel. The sustainability of these promising developments can be hindered by some constraints, such as water and nutrient footprints. This review surveys data on N2-fixing cyanobacteria for biomass production and ways to induce and improve the excretion of ammonium within cultures under aerobic conditions. The nitrogenase complex is oxygen sensitive. Nevertheless, nitrogen fixation occurs under oxic conditions due to cyanobacteria-specific characteristics. For instance, in some cyanobacteria, the vegetative cell differentiation in heterocyts provides a well-adapted anaerobic microenvironment for nitrogenase protection. Therefore, cell cultures of oxygenic cyanobacteria have been grown in laboratory and pilot photobioreactors (Dasgupta et al., 2010; Fontes et al., 1987; Moreno et al., 2003; Nayak & Das, 2013). Biomass production under diazotrophic conditions has been shown to be controlled by environmental factors such as light intensity, temperature, aeration rate, and inorganic carbon concentration, also, more specifically, by the concentration of dissolved oxygen in the culture medium. Currently, there is little information regarding the production of extracellular ammonium by heterocytous cyanobacteria. This review compares the available data on maximum ammonium concentrations and analyses the specific rate production in cultures grown as free or immobilized filamentous cyanobacteria. Extracellular production of ammonium could be coupled, as suggested by recent research on non-diazotrophic cyanobacteria, to that of other high value metabolites. There is little information available regarding the possibility for using diazotrophic cyanobacteria as cellular factories may be in regard of the constraints due to nitrogen fixation.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号