首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   2篇
  2022年   4篇
  2021年   5篇
  2020年   1篇
  2019年   1篇
  2018年   4篇
  2017年   3篇
  2016年   3篇
  2015年   1篇
  2013年   1篇
  2012年   5篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1991年   1篇
  1988年   2篇
排序方式: 共有55条查询结果,搜索用时 15 毫秒
1.
The Arabian Peninsula is a key region for understanding climate change and human occupation history in a marginal environment. The Mundafan palaeolake is situated in southern Saudi Arabia, in the Rub’ al-Khali (the ‘Empty Quarter’), the world’s largest sand desert. Here we report the first discoveries of Middle Palaeolithic and Neolithic archaeological sites in association with the palaeolake. We associate the human occupations with new geochronological data, and suggest the archaeological sites date to the wet periods of Marine Isotope Stage 5 and the Early Holocene. The archaeological sites indicate that humans repeatedly penetrated the ameliorated environments of the Rub’ al-Khali. The sites probably represent short-term occupations, with the Neolithic sites focused on hunting, as indicated by points and weaponry. Middle Palaeolithic assemblages at Mundafan support a lacustrine adaptive focus in Arabia. Provenancing of obsidian artifacts indicates that Neolithic groups at Mundafan had a wide wandering range, with transport of artifacts from distant sources.  相似文献   
2.
Molecular cloning and characterization of a human mitochondrial ceramidase   总被引:8,自引:0,他引:8  
We have recently purified a rat brain membrane-bound nonlysosomal ceramidase (El Bawab, S., Bielawska, A., and Y. A. Hannun (1999) J. Biol. Chem. 274, 27948-27955). Using peptide sequences obtained from the purified rat brain enzyme, we report here the cloning of the human isoform. The deduced amino acid sequence of the protein did not show any similarity with proteins of known function but was homologous to three putative proteins from Arabidospis thaliana, Mycobacterium tuberculosis, and Dictyostelium discoideum. Several blocks of amino acids were highly conserved in all of these proteins. Analysis of the protein sequence revealed the presence at the N terminus of a signal peptide followed by a putative myristoylation site and a putative mitochondrial targeting sequence. The predicted molecular mass was 84 kDa, and the isoelectric point was 6.69, in agreement with rat brain purified enzyme. Northern blot analysis of multiple human tissues showed the presence of a major band corresponding to a size of 3.5 kilobase. Analysis of this major band on the blot indicated that the enzyme is ubiquitously expressed with higher levels in kidney, skeletal muscle, and heart. The enzyme was then overexpressed in HEK 293 and MCF7 cells using the pcDNA3. 1/His-ceramidase construct, and ceramidase activity (at pH 9.5) increased by 50- and 12-fold, respectively. Next, the enzyme was characterized using lysate of overexpressing cells. The results confirmed that the enzyme catalyzes the hydrolysis of ceramide in the neutral alkaline range and is independent of cations. Finally, a green fluorescent protein-ceramidase fusion protein was constructed to investigate the localization of this enzyme. The results showed that the green fluorescent protein-ceramidase fusion protein presented a mitochondrial localization pattern and colocalized with mitochondrial specific probes. These results demonstrate that this novel ceramidase is a mitochondrial enzyme, and they suggest the existence of a topologically restricted pathways of sphingolipid metabolism.  相似文献   
3.
Pompe disease (glycogenosis type II) is a rare lysosomal disorder caused by a mutational deficiency of acid alpha-glucosidase (GAA). This deficiency leads to glycogen accumulation in multiple tissues: heart, skeletal muscles, and the central nervous system. A knockout mouse model mimicking the human condition has been used for histological evaluation. Currently, the best method for preserving glycogen in Pompe samples uses epon-araldite resin. Although the preservation by this method is excellent, the size of the tissue is limited to 1 mm(3). To accurately evaluate brain pathology in the Pompe mouse model, a modified glycol methacrylate (JB-4 Plus) method was developed. This approach allowed the production of larger tissue sections encompassing an entire mouse hemisphere (8 x 15 mm) while also providing a high level of morphological detail and preservation of glycogen. Application of the JB-4 Plus method is appropriate when a high level of cellular detail is desired. A modified paraffin method was also developed for use when rapid processing of multiple samples is a priority. Traditional paraffin processing results in glycogen loss. The modified paraffin method with periodic acid postfixation resulted in improved tissue morphology and glycogen preservation. Both techniques provide accurate anatomic evaluation of the glycogen distribution in Pompe mouse brain.  相似文献   
4.
In this study, the effects of short-term diabetes (4 days) on rat renal glomerular cells proliferation and the potential involvement of sphingolipids in this process were investigated. Immunohistochemical analysis showed that streptozotocin (STZ)-induced diabetes promoted increased intra-glomerular hyperplasia, particularly marked for mesangial cells. This was associated with a concomitant increase in neutral ceramidase and sphingosine-kinase activities and the accumulation of the pro-proliferative sphingolipid sphingosine-1-phosphate, in glomeruli isolated from kidney cortex of STZ-treated rats. These results suggest a possible involvement of sphingolipid metabolites in the glomerular proliferative response during the early stages of diabetic nephropathy.  相似文献   
5.
Advanced glycation end-products (AGE) are generated by chronic hyperglycaemia and may cause diabetic microvascular complications such as diabetic nephropathy. Many factors influence the development of diabetic nephropathy; however, dysregulation of mesangial cell (MC) proliferation appears to play an early and crucial role. In this study, we investigated the effects of AGE on rat MC proliferation and the involvement of sphingolipids in the AGE response. Results show a bimodal effect of AGE on MC proliferation. Thus, low AGE concentrations (<1 microm) induced a significant increase (+26%) of MC proliferation, whereas higher concentrations (10 microm) markedly reduced it (-24%). In parallel, AGE exerted biphasic effects on neutral ceramidase expression and activity. Low AGE concentrations increased neutral ceramidase activity and expression, whereas high AGE concentrations showed opposite effects. Surprisingly, neutral ceramidase modulation did not result in changes of ceramide levels. However, the AGE (10 microm)-inhibitory effect on MC proliferation was associated with accumulation of sphingosine and was specifically prevented by blocking glucosylceramide synthesis, suggesting that the high AGE concentration effects are mediated by sphingosine and/or glycolipids. On the other hand, treatment of cells with low AGE concentrations led to an increase of sphingosine kinase activity and sphingosine-1-phosphate production that drove the increase of MC proliferation. Interestingly, in glomeruli isolated from streptozotocin-diabetic rats, a time-dependent modulation of ceramidase activity was observed as compared with controls. These results suggest that AGE regulate MC growth by modulating neutral ceramidase and endogenous sphingolipids.  相似文献   
6.
The Hexosamine Pathway (HP) is one hypothesis proposed to explain glucose toxicity and the alterations observed during the course of diabetic microvascular complication development. Glucosamine is a precursor of UDP-N-Acetylglucosamine (UDP-GlcNAc), the main product of the HP that has often been used to mimic its activation. The transfer of a UDP-GlcNAc residue onto proteins (O-GlcNAc modification) represents the final step of the HP and is considered as a major mechanism by which this pathway exerts its signalling effects. While it is well accepted that the HP promotes extracellular matrix accumulation in the context of diabetic nephropathy, its involvement in the perturbations of cell cycle progression and hypertrophy of renal cells has been poorly investigated. Nevertheless, in a growing number of studies, the HP and O-GlcNAc modification are emerging as important regulators of cell cycle progression. This review will focus on the role of glucosamine and O-GlcNAc modification in cell cycle regulation in the context of diabetic nephropathy. Special emphasis will be given into the role of the HP as a potential mediator of the effects of high glucose on the perturbations of renal cell growth.  相似文献   
7.
Newborn cells of the adult dentate gyrus in the hippocampus are characterized by their abundant expression of polysialic acid (PSA), a carbohydrate attached to the neural cell adhesion molecule (NCAM). PSA+ newborn cells of the dentate gyrus form clusters with proliferating neural progenitor cells, migrate away from these clusters, and terminally differentiate. To identify the roles of PSA in the development of adult progenitors of the dentate gyrus, we injected endoneuraminidase N (endoN) into the hippocampus of adult rats to specifically cleave PSA from NCAM. Two days later, we administered the mitotic marker, 5-bromo-2'-deoxyuridine (BrdU). Three days after BrdU injection, BrdU+ cells were found inside and outside the clusters of newborn cells. In endoN-treated animals, the total number of BrdU+ cells was not changed but significantly more BrdU+ cells were present within clusters, suggesting that PSA normally facilitates the migration of progenitors away from the clusters. Seven days post-BrdU injection, endoN-treated animals had significantly more BrdU+ cells which were also positive for the mature neuronal nuclear marker NeuN compared with controls, indicating that the loss of PSA from progenitor cells increases neuronal differentiation. This report is the first demonstration that PSA is involved in controlling the spatio-temporal neuronal maturation of adult hippocampal progenitors in the normal brain. In vitro, the removal of PSA from adult-derived neural progenitors significantly enhanced neuronal differentiation, strengthening our in vivo findings and indicating that PSA removal on isolated progenitor cells, apart from a complex in vivo environment, induces neuronal maturation.  相似文献   
8.
9.
The effects of ACL-reconstruction on lower extremity joint mechanics during performance of the Star Excursion Balance Test (SEBT) and Single Leg Hop (SLH) are limited. The purpose of this study was to determine if altered lower extremity mechanics occur during the SEBT and SLH after ACL-reconstruction. One female Division I collegiate athlete performed the SEBT and SLH tasks, bilaterally, both before ACL injury and 27 months after ACL-reconstruction. Maximal reach, hop distances, lower extremity joint kinematics and moments were compared between both time points. Musculoskeletal simulations were used to assess muscle force production during the SEBT and SLH at both time points. Compared to the pre-injury time point, SEBT reach distances were similar in both limbs after ACL-reconstruction except for the max anterior reach distance in the ipsilateral limb. The athlete demonstrated similar hop distances, bilaterally, after ACL-reconstruction compared to the pre-injury time point. Despite normal functional performance during the SEBT and SLH, the athlete exhibited altered lower extremity joint mechanics during both of these tasks. These results suggest that measuring the maximal reach and hop distances for these tasks, in combination with an analysis of the lower extremity joint mechanics that occur after ACL-reconstruction, may help clinicians and researchers to better understand the effects of ACL-reconstruction on the neuromuscular system during the SEBT and SLH.  相似文献   
10.
We have purified a membrane bound ceramidase 22,300-fold to apparent homogeneity. The purification scheme included Triton X-100 extraction of membranes followed by Q-Sepharose, blue Sepharose, phenyl-Sepharose, and MonoS column chromatography. The purified enzyme showed an apparent molecular mass of 90 kDa as estimated by SDS-polyacrylamide gel electrophoresis under reducing conditions and 95 kDa by chromatography on Superose 12. Using C(16)-ceramide as substrate, the enzyme showed a broad pH optimum in the neutral to alkaline range. A mixed micelle assay was developed, and using Triton X-100/ceramide mixed micelles, the enzyme exhibited classical Michaelis-Menten kinetics, with a K(m) of 1.29 mol % and a V(max) of 4.4 micromol/min/mg. When dihydroceramide was used as substrate, these values were 3.84 mol % and 1.2 micromol/min/mg, respectively, indicating that the enzyme hydrolyzes ceramides preferentially. The activity of the purified ceramidase did not require cations, and it was inhibited by reducing agents. Phosphatidylcholine and sphingomyelin were without effect on the enzyme activity, whereas phosphatidic acid and phosphatidylserine stimulated the activity 3-fold. Sphingosine acted as a competitive inhibitor with an IC(50) of 5-10 microM. These results indicate that the purified enzyme is a novel ceramidase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号