首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  2015年   3篇
  2014年   2篇
  2013年   1篇
排序方式: 共有6条查询结果,搜索用时 125 毫秒
1
1.
Periodontal disease (PD) and atherosclerosis are both polymicrobial and multifactorial and although observational studies supported the association, the causative relationship between these two diseases is not yet established. Polymicrobial infection-induced periodontal disease is postulated to accelerate atherosclerotic plaque growth by enhancing atherosclerotic risk factors of orally infected Apolipoprotein E deficient (ApoEnull) mice. At 16 weeks of infection, samples of blood, mandible, maxilla, aorta, heart, spleen, and liver were collected, analyzed for bacterial genomic DNA, immune response, inflammation, alveolar bone loss, serum inflammatory marker, atherosclerosis risk factors, and aortic atherosclerosis. PCR analysis of polymicrobial-infected (Porphyromonas gingivalis [P. gingivalis], Treponema denticola [T. denticola], and Tannerella forsythia [T. forsythia]) mice resulted in detection of bacterial genomic DNA in oral plaque samples indicating colonization of the oral cavity by all three species. Fluorescent in situ hybridization detected P. gingivalis and T. denticola within gingival tissues of infected mice and morphometric analysis showed an increase in palatal alveolar bone loss (p<0.0001) and intrabony defects suggesting development of periodontal disease in this model. Polymicrobial-infected mice also showed an increase in aortic plaque area (p<0.05) with macrophage accumulation, enhanced serum amyloid A, and increased serum cholesterol and triglycerides. A systemic infection was indicated by the detection of bacterial genomic DNA in the aorta and liver of infected mice and elevated levels of bacterial specific IgG antibodies (p<0.0001). This study was a unique effort to understand the effects of a polymicrobial infection with P. gingivalis, T. denticola and T. forsythia on periodontal disease and associated atherosclerosis in ApoEnull mice.  相似文献   
2.
The American Heart Association supports an association between periodontal disease (PD) and atherosclerotic vascular disease (ASVD) but does not as of yet support a causal relationship. Recently, we have shown that major periodontal pathogens Porphyromonas gingivalis and Treponema denticola are causally associated with acceleration of aortic atherosclerosis in ApoEnull hyperlipidemic mice. The aim of this study was to determine if oral infection with another significant periodontal pathogen Fusobacterium nucleatum can accelerate aortic inflammation and atherosclerosis in the aortic artery of ApoEnull mice. ApoEnull mice (n = 23) were orally infected with F. nucleatum ATCC 49256 and euthanized at 12 and 24 weeks. Periodontal disease assessments including F. nucleatum oral colonization, gingival inflammation, immune response, intrabony defects, and alveolar bone resorption were evaluated. Systemic organs were evaluated for infection, aortic sections were examined for atherosclerosis, and inflammatory markers were measured. Chronic oral infection established F. nucleatum colonization in the oral cavity, induced significant humoral IgG (P=0.0001) and IgM (P=0.001) antibody response (12 and 24 weeks), and resulted in significant (P=0.0001) alveolar bone resorption and intrabony defects. F. nucleatum genomic DNA was detected in systemic organs (heart, aorta, liver, kidney, lung) indicating bacteremia. Aortic atherosclerotic plaque area was measured and showed a local inflammatory infiltrate revealed the presence of F4/80+ macrophages and CD3+ T cells. Vascular inflammation was detected by enhanced systemic cytokines (CD30L, IL-4, IL-12), oxidized LDL and serum amyloid A, as well as altered serum lipid profile (cholesterol, triglycerides, chylomicrons, VLDL, LDL, HDL), in infected mice and altered aortic gene expression in infected mice. Despite evidence for systemic infection in several organs and modulation of known atherosclerosis risk factors, aortic atherosclerotic lesions were significantly reduced after F. nucleatum infection suggesting a potential protective function for this member of the oral microbiota.  相似文献   
3.
Periodontal disease (PD) develops from a synergy of complex subgingival oral microbiome, and is linked to systemic inflammatory atherosclerotic vascular disease (ASVD). To investigate how a polybacterial microbiome infection influences atherosclerotic plaque progression, we infected the oral cavity of ApoEnull mice with a polybacterial consortium of 4 well-characterized periodontal pathogens, Porphyromonas gingivalis, Treponema denticola, Tannerealla forsythia and Fusobacterium nucleatum, that have been identified in human atherosclerotic plaque by DNA screening. We assessed periodontal disease characteristics, hematogenous dissemination of bacteria, peripheral T cell response, serum inflammatory cytokines, atherosclerosis risk factors, atherosclerotic plaque development, and alteration of aortic gene expression. Polybacterial infections have established gingival colonization in ApoEnull hyperlipidemic mice and displayed invasive characteristics with hematogenous dissemination into cardiovascular tissues such as the heart and aorta. Polybacterial infection induced significantly higher levels of serum risk factors oxidized LDL (p < 0.05), nitric oxide (p < 0.01), altered lipid profiles (cholesterol, triglycerides, Chylomicrons, VLDL) (p < 0.05) as well as accelerated aortic plaque formation in ApoEnull mice (p < 0.05). Periodontal microbiome infection is associated with significant decreases in Apoa1, Apob, Birc3, Fga, FgB genes that are associated with atherosclerosis. Periodontal infection for 12 weeks had modified levels of inflammatory molecules, with decreased Fas ligand, IL-13, SDF-1 and increased chemokine RANTES. In contrast, 24 weeks of infection induced new changes in other inflammatory molecules with reduced KC, MCSF, enhancing GM-CSF, IFNγ, IL-1β, IL-13, IL-4, IL-13, lymphotactin, RANTES, and also an increase in select inflammatory molecules. This study demonstrates unique differences in the host immune response to a polybacterial periodontal infection with atherosclerotic lesion progression in a mouse model.  相似文献   
4.
Periodontal disease is a highly prevalent chronic inflammatory disease and is associated with complex microbial infection in the subgingival cavity. Recently, American Heart Association supported a century old association between periodontal disease and atherosclerotic vascular disease. We have recently shown that polybacterial periodontal infection led to aortic atherosclerosis and modulation of lipid profiles; however the underlying mechanism(s) has not been yet demonstrated. Altered nitric oxide (NO) synthesis and tetrahydrobiopterin (BH4), a cofactor for nitric oxide synthases (NOS) has long been shown to be associated with vascular dysfunction and gastrointestinal motility disorders. We sought to examine the mechanism of periodontal infection leading to altered vascular and gastrointestinal smooth muscle relaxation, focusing on the BH4/nNOS pathways. In addition, we also have investigated how the antioxidant system (NRF2-Phase II enzyme expression) in vascular and GI specimens is altered by oral infection. Eight week old male ApoEnull mice were either sham-infected or infected orally for 16 weeks with a mixture of major periodontal bacteria Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia to induce experimental periodontitis. Serum, vascular (mesenteric), stomach, and colon specimens were collected at the end of periodontal pathogen infection. Bacterial infection induced significant (p<0.05) reductions in the levels of BH4,in ratio of BH4:BH2+B and also in nitric oxide levels compared to sham-infected controls. In addition, we identified a significant (p<0.05) reduction in eNOS dimerization, nNOS dimerization and protein expression of BH4 biosynthesis enzymes; GCH-1, DHFR and NRF2 & Phase II enzymes in infected mice versus controls in both mesenteric artery and colon tissues. However, we found no differences in nNOS/BH4 protein expression in stomach tissues of infected and sham-infected mice. This suggests that a polybacterial infection can cause significant changes in the vascular and colonic BH4/nNOS/NRF2 pathways which might lead to impaired vascular relaxation and colonic motility.  相似文献   
5.
Thrombotic occlusion of inflammatory plaque in coronary arteries causes myocardial infarction. Treatment with emergent balloon angioplasty (BA) and stent implant improves survival, but restenosis (regrowth) can occur. Periodontal bacteremia is closely associated with inflammation and native arterial atherosclerosis, with potential to increase restenosis. Two virus-derived anti-inflammatory proteins, M-T7 and Serp-1, reduce inflammation and plaque growth after BA and transplant in animal models through separate pathways. M-T7 is a broad spectrum C, CC and CXC chemokine-binding protein. Serp-1 is a serine protease inhibitor (serpin) inhibiting thrombotic and thrombolytic pathways. Serp-1 also reduces arterial inflammation and improves survival in a mouse herpes virus (MHV68) model of lethal vasculitis. In addition, Serp-1 demonstrated safety and efficacy in patients with unstable coronary disease and stent implant, reducing markers of myocardial damage. We investigate here the effects of Porphyromonas gingivalis, a periodontal pathogen, on restenosis after BA and the effects of blocking chemokine and protease pathways with M-T7 and Serp-1. ApoE−/− mice had aortic BA and oral P. gingivalis infection. Arterial plaque growth was examined at 24 weeks with and without anti-inflammatory protein treatment. Dental plaques from mice infected with P. gingivalis tested positive for infection. Neither Serp-1 nor M-T7 treatment reduced infection, but IgG antibody levels in mice treated with Serp-1 and M-T7 were reduced. P. gingivalis significantly increased monocyte invasion and arterial plaque growth after BA (P<0.025). Monocyte invasion and plaque growth were blocked by M-T7 treatment (P<0.023), whereas Serp-1 produced only a trend toward reductions. Both proteins modified expression of TLR4 and MyD88. In conclusion, aortic plaque growth in ApoE−/− mice increased after angioplasty in mice with chronic oral P. gingivalis infection. Blockade of chemokines, but not serine proteases significantly reduced arterial plaque growth, suggesting a central role for chemokine-mediated inflammation after BA in P. gingivalis infected mice.  相似文献   
6.
Atherosclerotic vascular disease is a leading cause of myocardial infarction and cerebrovascular accident, and independent associations with periodontal disease (PD) are reported. PD is caused by polymicrobial infections and aggressive immune responses. Genomic DNA of Porphyromonas gingivalis, the best-studied bacterial pathogen associated with severe PD, is detected within atherosclerotic plaque. We examined causal relationships between chronic P. gingivalis oral infection, PD, and atherosclerosis in hyperlipidemic ApoEnull mice. ApoEnull mice (n = 24) were orally infected with P. gingivalis for 12 and 24 weeks. PD was assessed by standard clinical measurements while the aorta was examined for atherosclerotic lesions and inflammatory markers by array. Systemic inflammatory markers serum amyloid A, nitric oxide, and oxidized low-density lipoprotein were analyzed. P. gingivalis infection elicited specific antibodies and alveolar bone loss. Fluorescent in situ hybridization detected viable P. gingivalis within oral epithelium and aorta, and genomic DNA was detected within systemic organs. Aortic plaque area was significantly increased in P. gingivalis-infected mice at 24 weeks (P<0.01). Aortic RNA and protein arrays indicated a strong Th2 response. Chronic oral infection with P. gingivalis results in a specific immune response, significant increases in oral bone resorption, aortic inflammation, viable bacteria in oral epithelium and aorta, and plaque development.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号