首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   1篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2014年   1篇
  2013年   4篇
  2012年   3篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2006年   2篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  1996年   1篇
  1987年   2篇
  1985年   2篇
排序方式: 共有39条查询结果,搜索用时 31 毫秒
1.
One hundred and seventy normal male infants from Delhi were studied using the CBG technique to estimate Y-chromosome length heteromorphisms. The median class in Y/F [Y/F = total length of the Y chromosome/average total length of the F group chromosomes (19 and 20)] distribution was 0.75-0.79. The Y/F index in infants varied from 0.60 to 1.16 with a mean of 0.81 and a standard deviation of 0.09. A high incidence for very small (53.5 percent) and small (41.2 percent) categories of Y-chromosome length heteromorphisms was observed. Data were compared with other available reports; also possible mechanisms of the Y-chromosome length heteromorphisms and their role in ethnic/racial variation as well as in developmental disturbances are discussed. It is suggested there may be a need to redefine the long and short Y chromosome in a given population while studying different clinical disorders.  相似文献   
2.
3.
The distribution of PBP5, the major D,D‐carboxypeptidase in Escherichia coli, was mapped by immunolabelling and by visualization of GFP fusion proteins in wild‐type cells and in mutants lacking one or more D,D‐carboxypeptidases. In addition to being scattered around the lateral envelope, PBP5 was also concentrated at nascent division sites prior to visible constriction. Inhibiting PBP2 activity (which eliminates wall elongation) shifted PBP5 to midcell, whereas inhibiting PBP3 (which aborts divisome invagination) led to the creation of PBP5 rings at positions of preseptal wall formation, implying that PBP5 localizes to areas of ongoing peptidoglycan synthesis. A PBP5(S44G) active site mutant was more evenly dispersed, indicating that localization required enzyme activity and the availability of pentapeptide substrates. Both the membrane bound and soluble forms of PBP5 converted pentapeptides to tetrapeptides in vitro and in vivo, and the enzymes accepted the same range of substrates, including sacculi, Lipid II, muropeptides and artificial substrates. However, only the membrane‐bound form localized to the developing septum and restored wild‐type rod morphology to shape defective mutants, suggesting that the two events are related. The results indicate that PBP5 localization to sites of ongoing peptidoglycan synthesis is substrate dependent and requires membrane attachment.  相似文献   
4.
5.
The ESSS protein is a recently identified subunit of mammalian mitochondrial complex I. It is a relatively small integral membrane protein (122 amino acids) found in the beta-subcomplex. Genomic sequence database searches reveal its localization to the X-chromosome in humans and mouse. The ESSS cDNA from Chinese hamster cells was cloned and shown to complement one complementation group of our previously described mutants with a proposed X-linkage. Sequence analyses of the ESSS cDNA in these mutants revealed chain termination mutations. In two of these mutants the protein is truncated at the C-terminus of the targeting sequence; the mutants are null mutants for the ESSS subunit. There is no detectable complex I assembly and activity in the absence of the ESSS subunit as revealed by blue native polyacrylamide gel electrophoresis (BN/PAGE) analysis and polarography. Complex I activity can be restored with ESSS subunits tagged with either hemagglutinin (HA) or hexahistidine (His6) epitopes at the C-terminus. Although, the accumulation of ESSS-HA is not dependent upon the presence of mtDNA-encoded subunits (ND1-6,4 L), it is incorporated into complex I only in presence of compatible complex I subunits from the same species.  相似文献   
6.
Structural studies of symmetric homo-oligomers provide mechanistic insights into their roles in essential biological processes, including cell signaling and cellular regulation. This paper presents a novel algorithm for homo-oligomeric structure determination, given the subunit structure, that is both complete, in that it evaluates all possible conformations, and data-driven, in that it evaluates conformations separately for consistency with experimental data and for quality of packing. Completeness ensures that the algorithm does not miss the native conformation, and being data-driven enables it to assess the structural precision possible from data alone. Our algorithm performs a branch-and-bound search in the symmetry configuration space, the space of symmetry axis parameters (positions and orientations) defining all possible C(n) homo-oligomeric complexes for a given subunit structure. It eliminates those symmetry axes inconsistent with intersubunit nuclear Overhauser effect (NOE) distance restraints and then identifies conformations representing any consistent, well-packed structure to within a user-defined similarity level. For the human phospholamban pentamer in dodecylphosphocholine micelles, using the structure of one subunit determined from a subset of the experimental NMR data, our algorithm identifies a diverse set of complex structures consistent with the nine intersubunit NOE restraints. The distribution of determined structures provides an objective characterization of structural uncertainty: backbone RMSD to the previously determined structure ranges from 1.07 to 8.85 A, and variance in backbone atomic coordinates is an average of 12.32 A(2). Incorporating vdW packing reduces structural diversity to a maximum backbone RMSD of 6.24 A and an average backbone variance of 6.80 A(2). By comparing data consistency and packing quality under different assumptions of oligomeric number, our algorithm identifies the pentamer as the most likely oligomeric state of phospholamban, demonstrating that it is possible to determine the oligomeric number directly from NMR data. Additional tests on a number of homo-oligomers, from dimer to heptamer, similarly demonstrate the power of our method to provide unbiased determination and evaluation of homo-oligomeric complex structures.  相似文献   
7.
The work from our laboratory on complex I-deficient Chinese hamster cell mutants is reviewed. Several complementation groups with a complete defect have been identified. Three of these are due to X-linked mutations, and the mutated genes for two have been identified. We describe null mutants in the genes for the subunits MWFE (gene: NDUFA1) and ESSS. They represent small integral membrane proteins localized in the Ialpha (Igamma) and Ibeta subcomplexes, respectively [J. Hirst, J. Carroll, I.M. Fearnley, R.J. Shannon, J.E. Walker. The nuclear encoded subunits of complex I from bovine heart mitochondria. Biochim. Biophys. Acta 1604 (7-10-2003) 135-150.]. Both are absolutely essential for assembly and activity of complex I. Epitope-tagged versions of these proteins can be expressed from a poly-cistronic vector to complement the mutants, or to be co-expressed with the endogenous proteins in other hamster cell lines (mutant or wild type), or human cells. Structure-function analyses can be performed with proteins altered by site-directed mutagenesis. A cell line has been constructed in which the MWFE subunit is conditionally expressed, opening a window on the kinetics of assembly of complex I. Its targeting, import into mitochondria, and orientation in the inner membrane have also been investigated. The two proteins have recently been shown to be the targets for a cAMP-dependent kinase [R. Chen, I.M. Fearnley, S.Y. Peak_Chew, J.E. Walker. The phosphorylation of subunits of complex I from bovine heart mitochondria. J. Biol. Chem. xx (2004) xx-xx.]. The epitope-tagged proteins can be cross-linked with other complex I subunits.  相似文献   
8.
The MWFE protein (70 amino acids) is highly conserved in evolution, but the human protein (80% identical to hamster) does not complement a null mutation in Chinese hamster cells. We have identified a small protein segment where significant differences exist between rodents and primates, illustrating very specifically the need for compatibility of the nuclear and mitochondrial genomes in the assembly of complex I. The segment between amino acids 39 and 46 appears to be critical for species-specific compatibility. Amino acid substitutions in this region were tested that caused a reduction of activity of the hamster protein or converted the inactive human protein into a partially active one. Such mutations could be useful in making mice with partial complex I activity as models for mitochondrial diseases. Their potential as dominant negative mutants was explored. More deleterious mutations in the NDUFA1 gene were also characterized. A conservative substitution, R50K, or a short C-terminal deletion makes the protein completely inactive. In the absence of MWFE, no high molecular weight complex was detectable by Blue Native-gel electrophoresis. The MWFE protein itself is unstable in the absence of assembled mitochondrially encoded integral membrane proteins of complex I.  相似文献   
9.
The velo-cardio-facial syndrome (VCFS)/DiGeorge syndrome (DGS) is a genetic disorder characterized by phenotypic abnormalities of the derivatives of the pharyngeal arches, including cardiac outflow tract defects. Neural crest cells play a major role in the development of the pharyngeal arches, and defects in these cells are likely responsible for the syndrome. Most patients are hemizygous for a 1.5- to 3.0-Mb region of 22q11, that is suspected to be critical for normal pharyngeal arch development. Mice hemizygous for a 1.5-Mb homologous region of chromosome 16 (Lgdel/+) exhibit conotruncal cardiac defects similar to those seen in affected VCFS/DGS patients. To investigate the role of Lgdel genes in neural crest development, we fate mapped neural crest cells in Lgdel/+ mice and we performed hemizygous neural crest-specific inactivation of Lgdel. Hemizygosity of the Lgdel region does not eliminate cardiac neural crest migration to the forming aortic arches. However, neural crest cells do not differentiate appropriately into smooth muscle in both fourth and sixth aortic arches and the affected aortic arch segments develop abnormally. Tissue-specific hemizygous inactivation of Lgdel genes in neural crest results in normal cardiovascular development. Based on our studies, we propose that Lgdel genes are required for the expression of soluble signals that regulate neural crest cell differentiation.  相似文献   
10.
The proximal long arm of chromosome 15 has segmental duplications located at breakpoints BP1?CBP5 that mediate the generation of NAHR-related microdeletions and microduplications. The classical Prader-Willi/Angelman syndrome deletion is flanked by either of the proximal BP1 or BP2 breakpoints and the distal BP3 breakpoint. The larger Type I deletions are flanked by BP1 and BP3 in both Prader-Willi and Angelman syndrome subjects. Those with this deletion are reported to have a more severe phenotype than individuals with either Type II deletions (BP2?CBP3) or uniparental disomy 15. The BP1?CBP2 region spans approximately 500?kb and contains four evolutionarily conserved genes that are not imprinted. Reports of mutations or disturbed expression of these genes appear to impact behavioral and neurological function in affected individuals. Recently, reports of deletions and duplications flanked by BP1 and BP2 suggest an association with speech and motor delays, behavioral problems, seizures, and autism. We present a large cohort of subjects with copy number alteration of BP1 to BP2 with common phenotypic features. These include autism, developmental delay, motor and language delays, and behavioral problems, which were present in both cytogenetic groups. Parental studies demonstrated phenotypically normal carriers in several instances, and mildly affected carriers in others, complicating phenotypic association and/or causality. Possible explanations for these results include reduced penetrance, altered gene dosage on a particular genetic background, or a susceptibility region as reported for other areas of the genome implicated in autism and behavior disturbances.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号