首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   4篇
  国内免费   1篇
  102篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2016年   3篇
  2015年   6篇
  2014年   2篇
  2013年   8篇
  2012年   10篇
  2011年   8篇
  2010年   6篇
  2009年   6篇
  2008年   10篇
  2007年   5篇
  2006年   2篇
  2005年   6篇
  2004年   5篇
  2003年   4篇
  2002年   3篇
  2000年   2篇
  1998年   1篇
  1996年   1篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1987年   1篇
  1981年   1篇
  1968年   1篇
排序方式: 共有102条查询结果,搜索用时 0 毫秒
1.
The field of biomarkers is a growing one, particularly in osteoarthritis (OA). OA is the most common disabling condition in older persons and a major cause of morbidity. While the debate continues about which of the involved tissues - cartilage, bone or synovium - is the most important in OA aetiology, there is no doubt that the three develop abnormalities in concert; perhaps a truly useful biomarker will reflect just that. While efforts continue to identify reliable biomarkers useful for characterising the status, prognosis and measurement of treatment response in OA, combining existing biomarkers to improve their accuracy looks promising.  相似文献   
2.

Background and methods

Human metapneumovirus (hMPV) is a recently discovered respiratory virus associated with bronchiolitis, pneumonia, croup and exacerbations of asthma. Since respiratory viruses are frequently detected in patients with acute exacerbations of COPD (AE-COPD) it was our aim to investigate the frequency of hMPV detection in a prospective cohort of hospitalized patients with AE-COPD compared to patients with stable COPD and to smokers without by means of quantitative real-time RT-PCR.

Results

We analysed nasal lavage and induced sputum of 130 patients with AE-COPD, 65 patients with stable COPD and 34 smokers without COPD. HMPV was detected in 3/130 (2.3%) AE-COPD patients with a mean of 6.5 × 105 viral copies/ml in nasal lavage and 1.88 × 105 viral copies/ml in induced sputum. It was not found in patients with stable COPD or smokers without COPD.

Conclusion

HMPV is only found in a very small number of patients with AE-COPD. However it should be considered as a further possible viral trigger of AE-COPD because asymptomatic carriage is unlikely.  相似文献   
3.
There is now compelling evidence that the neurodegenerative process in Alzheimer’s disease (AD) begins in synapses. Loss of synaptic proteins and functional synapses in the amyloid precursor protein (APP) transgenic mouse models of AD is well established. However, what is the earliest age at which such loss of synapses occurs, and whether known markers of AD progression accelerate functional deficits is completely unknown. We previously showed that RanBP9 overexpression leads to robustly increased amyloid β peptide (Aβ) generation leading to enhanced amyloid plaque burden in a mouse model of AD. In this study we compared synaptic protein levels among four genotypes of mice, i.e., RanBP9 single transgenic (Ran), APΔE9 double transgenic (Dbl), APΔE9/RanBP9 triple transgenic (Tpl) and wild-type (WT) controls. We found significant reductions in the levels of synaptic proteins in both cortex and hippocampus of 5- and 6-months-old but not 3- or 4-months-old mice. Specifically, at 5-months of age, rab3A was reduced in the triple transgenic mice only in the cortex by 25% (p<0.05) and gap43 levels were reduced only in the hippocampus by 44% (p<0.01) compared to wild-type (WT) controls. Interestingly, RanBP9 overexpression in the Tpl mice reduced gap43 levels by a further 31% (p<0.05) compared to APΔE9 mice. RanBP9 also further decreased the levels of drebrin in the hippocampus by 32% (p<0.01) and chromogranin in the cortex by 24% (p<0.05) compared to APΔE9 mice. At 6-months of age, RanBP9 expression in the cortex led to further reduction of rab3A by 30% (p<0.05) and drebrin by 38% (p<0.01) compared to APΔE9 mice. RanBP9 also increased Aβ oligomers in the cortex at 6 months. Similarly, in the hippocampus, RanBP9 expression further reduced rab3A levels by 36% (p<0.01) and drebrin levels by 33% (p<0.01). Taken together these data suggest that RanBP9 overexpression accelerates loss of synaptic proteins in the mouse brain.  相似文献   
4.
Brain accumulation of neurotoxic amyloid β (Aβ) peptide because of increased processing of amyloid precursor protein (APP), resulting in loss of synapses and neurodegeneration, is central to the pathogenesis of Alzheimer disease (AD). Therefore, the identification of molecules that regulate Aβ generation and those that cause synaptic damage is crucial for future therapeutic approaches for AD. We demonstrated previously that COPS5 regulates Aβ generation in neuronal cell lines in a RanBP9-dependent manner. Consistent with the data from cell lines, even by 6 months, COPS5 overexpression in APΔE9 mice (APΔE9/COPS5-Tg) significantly increased Aβ40 levels by 32% (p < 0.01) in the cortex and by 28% (p < 0.01) in the hippocampus, whereas the increases for Aβ42 were 37% (p < 0.05) and 34% (p < 0.05), respectively. By 12 months, the increase was even more robust. Aβ40 levels increased by 63% (p < 0.001) in the cortex and by 65% (p < 0.001) in the hippocampus. Similarly, Aβ42 levels were increased by 69% (p < 0.001) in the cortex and by 71% (p < 0.011) in the hippocampus. Increased Aβ levels were translated into an increased amyloid plaque burden both in the cortex (54%, p < 0.01) and hippocampus (64%, p < 0.01). Interestingly, COPS5 overexpression increased RanBP9 levels in the brain, which, in turn, led to increased amyloidogenic processing of APP, as reflected by increased levels of sAPPβ and decreased levels of sAPPα. Furthermore, COPS5 overexpression reduced spinophilin in both the cortex (19%, p < 0.05) and the hippocampus (20%, p < 0.05), leading to significant deficits in learning and memory skills. Therefore, like RanBP9, COPS5 also plays a pivotal role in amyloid pathology in vivo.  相似文献   
5.
Chikungunya is one of the most important emerging arboviral infections of public health significance. Due to lack of a licensed vaccine, rapid diagnosis plays an important role in early management of patients. In this study, a QC-RT–PCR assay was developed to quantify Chikungunya virus (CHIKV) RNA by targeting the conserved region of E1 gene. A competitor molecule containing an internal insertion was generated, which provided a stringent control of the quantification process. The introduction of 10-fold serially diluted competitor in each reaction was further used to determine sensitivity. The applicability of this assay for quantification of CHIKV RNA was evaluated with human clinical samples, and the results were compared with real-time quantitative RT–PCR. The sensitivity of this assay was estimated to be 100 RNA copies per reaction with a dynamic detection range of 102 to 1010 copies. Specificity was confirmed using closely related alpha and flaviviruses. The comparison of QC-RT–PCR result with real-time RT–PCR revealed 100% concordance for the detection of CHIKV in clinical samples. These findings demonstrated that the reported assay is convenient, sensitive and accurate method and has the potential usefulness for clinical diagnosis due to simultaneous detection and quantification of CHIKV in acute-phase serum samples.  相似文献   
6.
WhileEscherichia coli is common as a commensal organism in the distal ileum and colon, the presence of colonization factors (CF) on pathogenic strains ofE. coli facilitates attachment of the organism to intestinal receptor molecules in a species- and tissue-specific fashion. After the initial adherence, colonization occurs, and the involvement of additional virulence determinants leads to illness. EnterotoxigenicE. coli (ETEC) is the most extensively studied of the five categories ofE. coli that cause diarrheal disease, and has the greatest impact on health worldwide. ETEC can be isolated from domestic animals and humans. The biochemistry, genetics, epidemiology, antigenic characteristics, and cell and receptor binding properties of ETEC have been extensively described. Another major category, enteropathogenicE. coli (EPEC), has virulence mechanisms, primarily effacement and cytoskeletal rearrangement of intestinal brush borders, that are distinct from ETEC. An EPEC CF receptor has been purified and characterized as a sialidated transmembrane glycoprotein complex directly attached to actin, thereby associating CF-binding with host-cell response. Three, additional categories ofE. coli diarrheal disease, their colonization factors and their host cell receptors are discussed. It appears that biofilms exist in the intestine in a manner similar to oral bacterial biofilms, and thatE. coli is part of these biofilms as both commensals and pathogens.Abbreviations CF colonization factor - CFA Colonization Factor Antigen - CS coli-surface-associated antigen - EAggEC enteroaggregativeE. coli - ECDD E. coli diarrheal disease - EHEC enterohemorrhagicE. coli - EIEC enteroinvasiveE. coli - EPEC enteropathogenicE. coli - ETEC enterotoxigenicE. coli - Gal galactose - GalNAc N-acetyl galactosamine - LT heat-labile toxin - NeuAc N-acetyl neuraminic acid - PCF Putative colonization factor - RBC red blood cells - SLT Shiga-like toxin - ST heat-stable toxin  相似文献   
7.
We examined gazelle peripheral blood leucocytes using the α-Naphthyl acetate esterase (ANAE) staining technique (pH 5.8). Our purpose was to determine the percentage of ANAE positive lymphocytes. The proportion of ANAE positive T-lymphocytes was 72%. T-lymphocytes showed an ANAE positive reaction, but eosinophilic granulocytes and monocytes also showed a positive reaction. By contrast, no reaction was detected in B-lymphocytes, neutrophil granulocytes or platelets. The reaction observed in T-lymphocytes was a red-brown coloration, usually 1–2 granules, but enough granules to fill the cytoplasm were detected rarely. As a result of ANAE enzyme staining, we concluded that the staining technique can be used as a cytochemical marker for gazelle T-lymphocytes.  相似文献   
8.
9.
Japanese encephalitis (JE) is one of the leading causes of acute encephalopathy affecting children and adolescents in the tropics. Optimization of media was carried out for enhanced production of recombinant JE virus envelope domain III (EDIII) protein in Escherichia coli. Furthermore, batch and fed-batch cultivation process in E. coli was also developed in optimized medium. Expression of this protein in E. coli was induced with 1 mM isopropyl-β-thiogalactoside and yielded an insoluble protein aggregating to form inclusion bodies. The inclusion bodies were solubilized in 8 M urea, and the protein was purified under denaturing conditions using Ni-NTA affinity chromatography. After fed-batch cultivation, the recombinant E. coli resulted in cell dry weight and purified protein about 36.45 g l−1 and 720 mg l−1 of culture, respectively. The purity of the recombinant JE virus EDIII protein was checked by sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis, and reactivity of this protein was determined by Western blotting and ELISA with JE virus-infected human serum samples. These results establish the application of this protein to be used for the diagnosis of JE virus infection or for further studies in vaccine development. This process may also be suitable for the high-yield production of other recombinant viral proteins.  相似文献   
10.
Mutations in the PTEN‐induced kinase 1 (PINK1) are causative of autosomal recessive Parkinson''s disease (PD). We have previously reported that PINK1 is activated by mitochondrial depolarisation and phosphorylates serine 65 (Ser65) of the ubiquitin ligase Parkin and ubiquitin to stimulate Parkin E3 ligase activity. Here, we have employed quantitative phosphoproteomics to search for novel PINK1‐dependent phosphorylation targets in HEK (human embryonic kidney) 293 cells stimulated by mitochondrial depolarisation. This led to the identification of 14,213 phosphosites from 4,499 gene products. Whilst most phosphosites were unaffected, we strikingly observed three members of a sub‐family of Rab GTPases namely Rab8A, 8B and 13 that are all phosphorylated at the highly conserved residue of serine 111 (Ser111) in response to PINK1 activation. Using phospho‐specific antibodies raised against Ser111 of each of the Rabs, we demonstrate that Rab Ser111 phosphorylation occurs specifically in response to PINK1 activation and is abolished in HeLa PINK1 knockout cells and mutant PINK1 PD patient‐derived fibroblasts stimulated by mitochondrial depolarisation. We provide evidence that Rab8A GTPase Ser111 phosphorylation is not directly regulated by PINK1 in vitro and demonstrate in cells the time course of Ser111 phosphorylation of Rab8A, 8B and 13 is markedly delayed compared to phosphorylation of Parkin at Ser65. We further show mechanistically that phosphorylation at Ser111 significantly impairs Rab8A activation by its cognate guanine nucleotide exchange factor (GEF), Rabin8 (by using the Ser111Glu phosphorylation mimic). These findings provide the first evidence that PINK1 is able to regulate the phosphorylation of Rab GTPases and indicate that monitoring phosphorylation of Rab8A/8B/13 at Ser111 may represent novel biomarkers of PINK1 activity in vivo. Our findings also suggest that disruption of Rab GTPase‐mediated signalling may represent a major mechanism in the neurodegenerative cascade of Parkinson''s disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号