首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  9篇
  2021年   2篇
  2019年   2篇
  2015年   1篇
  2013年   3篇
  2009年   1篇
排序方式: 共有9条查询结果,搜索用时 0 毫秒
1
1.
2.
We study the reliability of layered networks of coupled “type I” neural oscillators in response to fluctuating input signals. Reliability means that a signal elicits essentially identical responses upon repeated presentations, regardless of the network’s initial condition. We study reliability on two distinct scales: neuronal reliability, which concerns the repeatability of spike times of individual neurons embedded within a network, and pooled-response reliability, which concerns the repeatability of total synaptic outputs from a subpopulation of the neurons in a network. We find that neuronal reliability depends strongly both on the overall architecture of a network, such as whether it is arranged into one or two layers, and on the strengths of the synaptic connections. Specifically, for the type of single-neuron dynamics and coupling considered, single-layer networks are found to be very reliable, while two-layer networks lose their reliability with the introduction of even a small amount of feedback. As expected, pooled responses for large enough populations become more reliable, even when individual neurons are not. We also study the effects of noise on reliability, and find that noise that affects all neurons similarly has much greater impact on reliability than noise that affects each neuron differently. Qualitative explanations are proposed for the phenomena observed.
Eric Shea-BrownEmail:
  相似文献   
3.
Journal of Mathematical Biology - Infectious diseases are among the most prominent threats to mankind. When preventive health care cannot be provided, a viable means of disease control is the...  相似文献   
4.
Perturbation theory is an important tool in the analysis of oscillators and their response to external stimuli. It is predicated on the assumption that the perturbations in question are “sufficiently weak”, an assumption that is not always valid when perturbative methods are applied. In this paper, we identify a number of concrete dynamical scenarios in which a standard perturbative technique, based on the infinitesimal phase response curve (PRC), is shown to give different predictions than the full model. Shear-induced chaos, i.e., chaotic behavior that results from the amplification of small perturbations by underlying shear, is missed entirely by the PRC. We show also that the presence of “sticky” phase–space structures tend to cause perturbative techniques to overestimate the frequencies and regularity of the oscillations. The phenomena we describe can all be observed in a simple 2D neuron model, which we choose for illustration as the PRC is widely used in mathematical neuroscience.  相似文献   
5.
Constraining the many biological parameters that govern cortical dynamics is computationally and conceptually difficult because of the curse of dimensionality. This paper addresses these challenges by proposing (1) a novel data-informed mean-field (MF) approach to efficiently map the parameter space of network models; and (2) an organizing principle for studying parameter space that enables the extraction biologically meaningful relations from this high-dimensional data. We illustrate these ideas using a large-scale network model of the Macaque primary visual cortex. Of the 10-20 model parameters, we identify 7 that are especially poorly constrained, and use the MF algorithm in (1) to discover the firing rate contours in this 7D parameter cube. Defining a “biologically plausible” region to consist of parameters that exhibit spontaneous Excitatory and Inhibitory firing rates compatible with experimental values, we find that this region is a slightly thickened codimension-1 submanifold. An implication of this finding is that while plausible regimes depend sensitively on parameters, they are also robust and flexible provided one compensates appropriately when parameters are varied. Our organizing principle for conceptualizing parameter dependence is to focus on certain 2D parameter planes that govern lateral inhibition: Intersecting these planes with the biologically plausible region leads to very simple geometric structures which, when suitably scaled, have a universal character independent of where the intersections are taken. In addition to elucidating the geometry of the plausible region, this invariance suggests useful approximate scaling relations. Our study offers, for the first time, a complete characterization of the set of all biologically plausible parameters for a detailed cortical model, which has been out of reach due to the high dimensionality of parameter space.  相似文献   
6.

This paper introduces a class of stochastic models of interacting neurons with emergent dynamics similar to those seen in local cortical populations. Rigorous results on existence and uniqueness of nonequilibrium steady states are proved. These network models are then compared to very simple reduced models driven by the same mean excitatory and inhibitory currents. Discrepancies in firing rates between network and reduced models are investigated and explained by correlations in spiking, or partial synchronization, working in concert with “nonlinearities” in the time evolution of membrane potentials. The use of simple random walks and their first passage times to simulate fluctuations in neuronal membrane potentials and interspike times is also considered.

  相似文献   
7.
This paper uses mathematical modeling to study the mechanisms of surround suppression in the primate visual cortex. We present a large-scale neural circuit model consisting of three interconnected components: LGN and two input layers (Layer 4Ca and Layer 6) of the primary visual cortex V1, covering several hundred hypercolumns. Anatomical structures are incorporated and physiological parameters from realistic modeling work are used. The remaining parameters are chosen to produce model outputs that emulate experimentally observed size-tuning curves. Our two main results are: (i) we discovered the character of the long-range connections in Layer 6 responsible for surround effects in the input layers; and (ii) we showed that a net-inhibitory feedback, i.e., feedback that excites I-cells more than E-cells, from Layer 6 to Layer 4 is conducive to producing surround properties consistent with experimental data. These results are obtained through parameter selection and model analysis. The effects of nonlinear recurrent excitation and inhibition are also discussed. A feature that distinguishes our model from previous modeling work on surround suppression is that we have tried to reproduce realistic lengthscales that are crucial for quantitative comparison with data. Due to its size and the large number of unknown parameters, the model is computationally challenging. We demonstrate a strategy that involves first locating baseline values for relevant parameters using a linear model, followed by the introduction of nonlinearities where needed. We find such a methodology effective, and propose it as a possibility in the modeling of complex biological systems.  相似文献   
8.
Randomly connected networks of neurons driven by Poisson inputs are often assumed to produce “homogeneous” dynamics, characterized by largely independent firing and approximable by diffusion processes. At the same time, it is well known that such networks can fire synchronously. Between these two much studied scenarios lies a vastly complex dynamical landscape that is relatively unexplored. In this paper, we discuss a phenomenon which commonly manifests in these intermediate regimes, namely brief spurts of spiking activity which we call multiple firing events (MFE). These events do not depend on structured network architecture nor on structured input; they are an emergent property of the system. We came upon them in an earlier modeling paper, in which we discovered, through a careful benchmarking process, that MFEs are the single most important dynamical mechanism behind many of the V1 phenomena we were able to replicate. In this paper we explain in a simpler setting how MFEs come about, as well as their potential dynamic consequences. Although the mechanism underlying MFEs cannot easily be captured by current population dynamics models, this phenomena should not be ignored during analysis; there is a growing body of evidence that such collaborative activity may be a key towards unlocking the possible functional properties of many neuronal networks.  相似文献   
9.
This paper proposes that the network dynamics of the mammalian visual cortex are highly structured and strongly shaped by temporally localized barrages of excitatory and inhibitory firing we call ‘multiple-firing events’ (MFEs). Our proposal is based on careful study of a network of spiking neurons built to reflect the coarse physiology of a small patch of layer 2/3 of V1. When appropriately benchmarked this network is capable of reproducing the qualitative features of a range of phenomena observed in the real visual cortex, including spontaneous background patterns, orientation-specific responses, surround suppression and gamma-band oscillations. Detailed investigation into the relevant regimes reveals causal relationships among dynamical events driven by a strong competition between the excitatory and inhibitory populations. It suggests that along with firing rates, MFE characteristics can be a powerful signature of a regime. Testable predictions based on model observations and dynamical analysis are proposed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号