首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   1篇
  2022年   2篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2016年   1篇
  2015年   2篇
  2013年   3篇
  2012年   3篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2004年   2篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
1.
Aquatic pollution is an increasing problem and requires extensive research efforts to understand associated consequences and to find suitable solutions. The crustacean Daphnia is a keystone species in lacustrine ecosystems by connecting primary producers with higher trophic levels. Therefore, Daphnia is perfectly suitable to investigate biological effects of freshwater pollution and is frequently used as an important model organism in ecotoxicology. The field of ecotoxicoproteomics has become increasingly prevalent, as proteins are important for an organism's physiology and respond rapidly to changing environmental conditions. However, one obstacle in proteome analysis of Daphnia is highly abundant proteins like vitellogenin, decreasing the analytical depth of proteome analysis. To improve proteome coverage in Daphnia, we established an easy-to-use procedure based on the LC-MS/MS of whole daphnids and the dissected Daphnia gut, which is the main tissue getting in contact with soluble and particulate pollutants, separately. Using a comprehensive spectral library, generated by gas-phase fractionation and a data-independent acquisition method, we identified 4621 and 5233 protein groups at high confidence (false discovery rate < 0.01) in Daphnia and Daphnia gut samples, respectively. By combining both datasets, a proteome coverage of 6027 proteins was achieved, demonstrating the effectiveness of our approach.  相似文献   
2.

The invasion of dreissenid mussels into inland waters of the Northern Hemisphere has received considerable attention and, both zebra mussels and quagga mussels continue to spread westward. Despite studies aimed at understanding the biology of dreissenid mussels, relatively few studies have focused on water velocity and other hydrodynamic characteristics of water flow. The objective of this review was to identify, through a search of online databases, the papers that have been made available that directly have assessed the influence of hydrodynamic characteristics of water flow on dreissenid mussel biology. Using Thompson Reuters Web of Science, Google Scholar, and other resources, 46 papers were identified. These papers detailed that metrics associated with hydrodynamics of water flow, including current, wave action, velocity, flow rate, and discharge, can influence the biology of dreissenid mussels (primarily zebra mussel, which were studied far more than quagga mussel). Hydrodynamic characteristics influenced external fertilization, larval development and settlement, juvenile recruitment and attachment, and suspension feeding, growth and abundance of adults. In most cases, the impact of higher flow rates were locally negative and may present an opportunity for applications of water flow to control the spread or establishment of dreissenid mussels. Several knowledge gaps have been identified.

  相似文献   
3.
Hydrobiologia - The crustacean genus Daphnia holds a key position in aquatic ecosystems rendering it an important model organism in environmental research. Its enormous sensitivity to environmental...  相似文献   
4.
Invasive alien species are a major threat to ecosystems. Invasive terrestrial plants can produce allelochemicals which suppress native terrestrial biodiversity. However, it is not known if leached allelochemicals from invasive plants growing in riparian zones, such as Impatiens glandulifera, also affect freshwater ecosystems. We used mesocosms and laboratory experiments to test the impact of I. glandulifera on a simplified freshwater food web. Our mesocosm experiments show that leachate from I. glandulifera significantly reduced population growth rate of the water flea Daphnia magna and the green alga Acutodesmus obliquus, both keystone species of lakes and ponds. Laboratory experiments using the main allelochemical released by I. glandulifera, 2‐methoxy‐1,4‐naphthoquinone, revealed negative fitness effects in D. magna and A. obliquus. Our findings show that allelochemicals from I. glandulifera not only reduce biodiversity in terrestrial habitats but also pose a threat to freshwater ecosystems, highlighting the necessity to incorporate cross‐ecosystem effects in the risk assessment of invasive species.  相似文献   
5.
Ecosystems are interconnected by energy fluxes that provide resources for the inhabiting organisms along the transition zone. Especially where in situ resources are scarce, ecosystems can become highly dependent on external resources. The dependency on external input becomes less pronounced in systems with elevated in situ production, where only consumer species close to the site of external input remain subsidized, whereas species distant to the input site rely on the in situ production of the ecosystem. It is largely unclear though if this pattern is consistent over different consumer species and trophic levels in one ecosystem, and whether consumer species that occur both proximate to and at a distance from the input site differ in their dependency on external resource inputs between sites. Using stable isotope analysis, we investigated the dependency on external marine input for common ground‐associated consumer taxa on small tropical islands with high in situ production. We show that marine input is only relevant for strict beach‐dwelling taxa, while the terrestrial vegetation is the main carbon source for inland‐dwelling taxa. Consumer species that occurred both close (beach) and distant (inland) to the site of marine input showed similar proportions of marine input in their diets. This supports earlier findings that the relevance of external resources becomes limited to species close to the input site in systems with sufficient in situ production. However, it also indicates that the relevance of external input is also species‐dependent, as consumers occurring close and distant to the input site depended equally strong or weak on marine input.  相似文献   
6.
The development of structural defences, such as the fortification of shells or exoskeletons, is a widespread strategy to reduce predator attack efficiency. In unpredictable environments these defences may be more pronounced in the presence of a predator. The cladoceran Daphnia magna (Crustacea: Branchiopoda: Cladocera) has been shown to develop a bulky morphotype as an effective inducible morphological defence against the predatory tadpole shrimp Triopscancriformis (Crustacea: Branchiopoda: Notostraca). Mediated by kairomones, the daphnids express an increased body length, width and an elongated tail spine. Here we examined whether these large scale morphological defences are accompanied by additional ultrastructural defences, i.e. a fortification of the exoskeleton. We employed atomic force microscopy (AFM) based nanoindentation experiments to assess the cuticle hardness along with tapping mode AFM imaging to visualise the surface morphology for predator exposed and non-predator exposed daphnids. We used semi-thin sections of the carapace to measure the cuticle thickness, and finally, we used fluorescence microscopy to analyse the diameter of the pillars connecting the two carapace layers. We found that D . magna indeed expresses ultrastructural defences against Triops predation. The cuticle in predator exposed individuals is approximately five times harder and two times thicker than in control daphnids. Moreover, the pillar diameter is significantly increased in predator exposed daphnids. These predator-cue induced changes in the carapace architecture should provide effective protection against being crushed by the predator’s mouthparts and may add to the protective effect of bulkiness. This study highlights the potential of interdisciplinary studies to uncover new and relevant aspects even in extensively studied fields of research.  相似文献   
7.
The surface area of corals represents a major reference parameter for the standardization of flux rates, for coral growth investigations, and for investigations of coral metabolism. The methods currently used to determine the surface area of corals are rather approximate approaches lacking accuracy, or are invasive and often destructive methods that are inapplicable for experiments involving living corals. This study introduces a novel precise and non-destructive technique to quantify surface area in living coral colonies by applying computed tomography (CT) and subsequent 3D reconstruction. Living coral colonies of different taxa were scanned by conventional medical CT either in air or in sea water. Resulting data volumes were processed by 3D modeling software providing realistic 3D coral skeleton surface reconstructions, thus enabling surface area measurements. Comparisons of CT datasets obtained from calibration bodies and coral colonies proved the accuracy of the surface area determination. Surface area quantifications derived from two different surface rendering techniques applied for scanning living coral colonies showed congruent results (mean deviation ranging from 1.32 to 2.03%). The validity of surface area measurement was verified by repeated measurements of the same coral colonies by three test persons. No significant differences between all test persons in all coral genera and in both surface rendering techniques were found (independent sample t-test: all n.s.). Data analysis of a single coral colony required approximately 15 to 30 min for a trained user using the isosurface technique regardless of the complexity and growth form of the latter, rendering the method presented in this study as a time-saving and accurate method to quantify surface areas in both living coral colonies and bare coral skeletons. Communicated by Biology Editor Dr Michael Lesser  相似文献   
8.
The expression of inducible morphological defenses in Daphnia in response to a single predator is a well-known phenomenon. However, predator-specific modifications of the same defensive traits as an adaption to different predator regimes is so far only described for Daphnia barbata. It is unknown if this accounts only for this species or if it is a more widespread, general adaptive response in the genus Daphnia. In the present study, we therefore investigated whether a clone of the pond-dwelling species Daphnia similis responds to different predatory invertebrates (Triops cancriformis; Notonecta maculata) with the expression of predator-specific modifications of the same defensive traits. We showed that Triops-exposed individuals express a significantly longer tail-spine, while body width decreased in comparison to control individuals. Additionally, they also expressed inconspicuous defenses, that is, significantly longer spinules on the dorsal ridge. The Notonecta-exposed D. similis showed a significantly longer tail-spine, longer spinules and a larger spinules bearing area on the dorsal ridge than control individuals as well. However, a geometric morphometric analysis of the head shape revealed significant, predator-specific changes. Triops-exposed individuals expressed a flattened head shape with a pronounced dorsal edge, while Notonecta-exposed individuals developed a high and strongly rounded head. Our study describes so far unrecognized inducible defenses of D. similis against two predators in temporary waters. Furthermore, the predator-dependent change in head shape is in concordance with the ‘concept of modality’, which highlights the qualitative aspect of natural selection caused by predators.  相似文献   
9.
Inducible defensive traits against herbivores or predators are widespread in plants and animals. Theory predicts that defended morphs have greater fitness in the presence of predators, but lower fitness than undefended morphs in the absence of predators. If such costs did not exist, then a constitutively defended morph would be favored by natural selection; yet, evidence for such costs has been elusive. Our current work reveals a significant cost to inducible defenses. Using the waterflea (Daphnia) model system, we show that induced defended morphs are significantly more vulnerable to infection by a virulent yeast parasite than undefended morphs. In two independent experiments, the proportion of successful infections and the number of parasite spores were higher among defended versus undefended Daphnia. Thus, by demonstrating a previously unknown and environmentally relevant cost to inducible defenses, this study enhances our understanding of adaptive phenotypic plasticity and its evolution.  相似文献   
10.
Many prey species evolved inducible defense strategies that protect effectively against predation threats. Especially the crustacean Daphnia emerged as a model system for studying the ecology and evolution of inducible defenses. Daphnia pulex e.g. shows different phenotypic adaptations against vertebrate and invertebrate predators. In response to the invertebrate phantom midge larvae Chaoborus (Diptera) D. pulex develops defensive morphological defenses (neckteeth). Cues originating from predatory fish result in life history changes in which resources are allocated from somatic growth to reproduction. While there are hints that responses against Chaoborus cues are transmitted involving cholinergic neuronal pathways, nothing is known about the neurophysiology underlying the transmission of fish related cues. We investigated the neurophysiological basis underlying the activation of inducible defenses in D. pulex using induction assays with the invertebrate predator Chaoborus and the three-spined stickleback Gasterosteus aculeatus. Predator-specific cues were combined with neuro-effective substances that stimulated or inhibited the cholinergic and gabaergic nervous system. We show that cholinergic-dependent pathways are involved in the perception and transmission of Chaoborus cues, while GABA was not involved. Thus, the cholinergic nervous system independently mediates the development of morphological defenses in response to Chaoborus cues. In contrast, only the inhibitory effect of GABA significantly influence fish-induced life history changes, while the application of cholinergic stimulants had no effect in combination with fish related cues. Our results show that cholinergic stimulation mediates signal transmission of Chaoborus cues leading to morphological defenses. Fish cues, which are responsible for predator-specific life history adaptations involve gabaergic control. Our study shows that both pathways are independent and thus potentially allow for adjustment of responses to variable predation regimes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号