首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   2篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2015年   3篇
  2014年   4篇
  2013年   4篇
  2011年   2篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2001年   4篇
  2000年   1篇
  1999年   4篇
  1998年   2篇
  1996年   1篇
  1994年   1篇
  1993年   2篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
排序方式: 共有56条查询结果,搜索用时 46 毫秒
1.
2.
L1 retroposons are represented in mice by subfamilies of interspersed sequences of varied abundance. Previous analyses have indicated that subfamilies are generated by duplicative transposition of a small number of members of the L1 family, the progeny of which then become a major component of the murine L1 population, and are not due to any active processes generating homology within preexisting groups of elements in a particular species. In mice, more than a third of the L1 elements belong to a clade that became active approximately 5 Mya and whose elements are > or = 95% identical. We have collected sequence information from 13 L1 elements isolated from two species of voles (Rodentia: Microtinae: Microtus and Arvicola) and have found that divergence within the vole L1 population is quite different from that in mice, in that there is no abundant subfamily of homologous elements. Individual L1 elements from voles are very divergent from one another and belong to a clade that began a period of elevated duplicative transposition approximately 13 Mya. Sequence analyses of portions of these divergent L1 elements (approximately 250 bp each) gave no evidence for concerted evolution having acted on the vole L1 elements since the split of the two vole lineages approximately 3.5 Mya; that is, the observed interspecific divergence (6.7%-24.7%) is not larger than the intraspecific divergence (7.9%-27.2%), and phylogenetic analyses showed no clustering into Arvicola and Microtus clades.   相似文献   
3.
4.
The osteocyte cell network in bone tissue is thought to orchestrate tissue adaptation and remodeling, thus holding responsibility for tissue quality. Previously, this structure has been studied mainly in 2D and its architecture and functions are not fully elucidated. The assessment of the osteocyte system is prerequisite for deeper understanding of bone remodeling and for advances in management of bone diseases. Our goal is to enable 3D isotropic imaging of bone at cellular level and to develop algorithms for quantitative image analysis of the cell network. We recently demonstrated accurate 3D imaging of this cell structure with synchrotron radiation tomography at submicrometric scale. Due to the limited spatial resolution of the imaging system and the constraints in terms of radiation dose, the images suffer from low signal to noise ratio and the detection of the cell dendrites is challenging. Here we detail a method for enhancement of the osteocyte network in human bone from 3D microtomography images. The approach combines Hessian-based 3D line enhancement and bilateral filtering. Our method enables extraction of the interconnected cells from noisy images, preserving the integrity of the cells and of their slender dendrites. Qualitative and quantitative results are presented.  相似文献   
5.
Maintenance of a high degree of biodiversity in homogeneous environments is poorly understood. A complex cheese starter culture with a long history of use was characterized as a model system to study simple microbial communities. Eight distinct genetic lineages were identified, encompassing two species: Lactococcus lactis and Leuconostoc mesenteroides. The genetic lineages were found to be collections of strains with variable plasmid content and phage sensitivities. Kill-the-winner hypothesis explaining the suppression of the fittest strains by density-dependent phage predation was operational at the strain level. This prevents the eradication of entire genetic lineages from the community during propagation regimes (back-slopping), stabilizing the genetic heterogeneity in the starter culture against environmental uncertainty.  相似文献   
6.
Irisin was first identified in muscle cells. We detected irisin immunoreactivity in various organs of the crested porcupine (Hystrix cristata). In the epidermis, irisin immunoreactivity was localized mainly in stratum basale, stratum spinosum and stratum granulosum layers; immunoreactivity was not observed in the stratum corneum. In the dermis, irisin was found in the external and internal root sheath, cortex and medulla of hair follicles, and in sebaceous glands. Irisin immunoreactivity was found in the neural retina and skeletal muscle fibers associated with the eye. The pineal and thyroid glands also exhibited irisin immunoreactivity.  相似文献   
7.
8.
The goal of this study was to determine, through a longitudinal follow-up, whether sex influences bone adaptation during simulated weightlessness. Twelve-week-old male and female Wistar rats were hindlimb unweighted for 2 wk, and the time course of bone alteration was monitored in vivo by means of densitometry and unbiased three-dimensional quantitative microcomputed tomography at 7 and 14 days. Compared with male rats, female rats had twice more cancellous bone volume at the proximal tibia at baseline, and this bone volume continued to increase, whereas in males it stabilized. Conversely, cortical area was greater in males than in females, and in both sexes cortical bone was still expanding. Hindlimb unloading resulted in larger reductions in males than in females in both cortical and cancellous compartments. In females, trabecular thickness and number decreased mildly, whereas in males trabecular number was dramatically reduced. In both sexes, the trabecular network became less connected and more rod-like shaped. Bone cellular activities evaluated by histomorphometry showed decreased bone formation rate in both sexes and increased resorption activity only in males. In conclusion, in female rats unloaded-related cancellous alterations reversed the growing process, whereas in males, which show lower growth process, it induced an accentuation of age-related cancellous bone changes for most of the parameters.  相似文献   
9.
We showed that cyclic strain (CS) of osteoblastic cells induced tyrosine phosphorylation of two homologous tyrosine kinases FAK and PYK2, and of two homologous adaptor proteins paxillin and Hic5, with similar kinetics. Immunostaining showed that all four proteins were localized to focal contacts in controls. In contrast, the dynamics of their subcellular localization observed after CS differed. While FAK and paxillin remained at the focal contact, Hic-5 and PYK2 translocated outside ventral focal contacts as early as 30 min after CS and were sequestered by the cytoskeleton. Co-immunoprecipitation showed that the association of PYK2/Hic-5 and PYK2/FAK increased with time after strain while that of paxillin and Hic-5 decreased. Altogether these results suggested that CS regulates focal contact activity in osteoblasts by modulating PYK2-containing complexes in particular by shuttling out of the focal contact the adaptor Hic-5 and favoring the anchorage of FAK within contacts.  相似文献   
10.
Interactions between anthropogenic disturbances and introduced and native species can shift ecological communities, potentially leading to the successful establishment of additional invaders. Since its discovery in New Jersey in 1988, the Asian shore crab (Hemigrapsus sanguineus) has continued to expand its range, invading estuarine and coastal habitats in eastern North America. In estuarine environments, H. sanguineus occupies similar habitats to native, panopeid mud crabs. These crabs, and a variety of fouling organisms (both NIS and native), often inhabit man-made substrates (like piers and riprap) and anthropogenic debris. In a series of in situ experiments at a closed dock in southwestern Long Island (New York, USA), we documented the impacts of these native and introduced crabs on hard-substrate fouling communities. We found that while the presence of native mud crabs did not significantly influence the succession of fouling communities compared to caged and uncaged controls, the presence of introduced H. sanguineus reduced the biomass of native tunicates (particularly Molgula manhattensis), relative to caged controls. Moreover, the presence of H. sanguineus favored fouling communities dominated by introduced tunicates (especially Botrylloides violaceous and Diplosoma listerianum). Altogether, our results suggest that H. sanguineus could help facilitate introduced fouling tunicates in the region, particularly in locations where additional solid substrates have created novel habitats.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号