首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   5篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   5篇
  2011年   3篇
  2010年   3篇
  2009年   2篇
  2004年   1篇
  2002年   1篇
  2001年   2篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1982年   1篇
  1978年   1篇
  1977年   2篇
排序方式: 共有34条查询结果,搜索用时 15 毫秒
1.
The Drosophila melanogaster gene flightless-I, involved in gastrulation and muscle degeneration, has Caenorhabditis elegans and human homologues. In these highly conserved genes, two previously known gene families have been brought together, families encoding the actin- binding proteins related to gelsolin and the leucine-rich-repeat (LRR) group of proteins involved in protein-protein interactions. Both these gene families exhibit characteristics of molecular changes involving replication slippage and exon shuffling. Phylogenetic analyses of 19 amino acid sequences of 6 related protein types indicate that actin- associated proteins related to gelsolin are monophyletic to a common ancestor and include flightless proteins. Conversely, comparison of 24 amino acid sequences of LRR proteins including the flightless proteins indicates that flightless proteins are members of a structurally related subgroup. Included in the flightless cluster are human and mouse rsp-1 proteins involved in suppressing v-Ras transformation of cells and the membrane-associated yeast (Saccharomyces cerevisae) adenylate cyclase whose analogous LRRs are required for interaction with Ras proteins. There is a strong possibility that ligands for this group could be related and that flightless may have a similar role in Ras signal transduction. It is hypothesized that an ancestral monomeric gelsolin precursor protein has undergone at least four independent gene reorganization events to account for the structural diversity of the extant family of gelsolin-related proteins and that gene duplication and exon shuffling events occurred prior to or at the beginning of multicellular life, resulting in the evolution of some members of the family soon after the appearance of actin-type proteins.   相似文献   
2.
Mg(2+) at an optimal concentration of 2mM (ph 6.5) induces large increases (up to 30 percent) in the optical density of bovine heart mitochondria incubated under conditions of low ionic strength (< approx. 0.01). The increases are associated with aggregation (sticking together) of the inner membranes and are little affected by changes in the energy status of the mitochondria. Virtually all of a number of other polyvalent cations tested and Ag(+) induce increases in mitochondrial optical density similar to those induced by Mg(2+), their approximate order of concentration effectiveness in respect to Mg(2+) being: La(3+) > Pb(2+) = Cu(2+) > Cd(2+) > Zn(2+) > Ag(+) > Mn(2+) > Ca(2+) > Mg(2+). With the exception of Mg(2+), all of these cations appear to induce swelling of the mitochondria concomitant with inner membrane aggregation. The inhibitors of the adenine nucleotide transport reaction carboxyatratyloside and bongkrekic acid are capable of preventing and reversing Mg(2+)-induced aggregation at the same low concentration required for complete inhibition of phosphorylating respiration, suggesting that they inhibit the aggregation by binding to the adenine nucleotide carrier. The findings are interpreted to indicate (a) that the inner mitochondrial membrane is normally prevented from aggregating by virtue of its net negative outer surface change, (b) that the cations induce the membrane to aggregate by binding at its outer surface, decreasing the net negative charge, and (c) that carboxyatractyloside and bongkrekic acid inhibit the aggregation by binding to the outer surface of the membrane, increasing the net negative charge.  相似文献   
3.
Rates and patterns of evolution in partial sequences of five mitochondrial genes (cytochrome b, ATPase 6, NADH dehydrogenase subunit 5, tRNA(Glu), and the control region) were compared among taxa in the passerine bird genera Fringilla and Carduelis. Rates of divergence do not vary significantly among genes, even in comparisons with the control region. Rate variation among lineages is significant only for the control region and NADH dehydrogenase subunit 5, and patterns of variation are consistent with the expectations of neutral theory. Base composition is biased in all genes but is stationary among lineages, and there is evidence for directional mutation pressure only in the control region. Despite these similarities, patterns of substitution differ among genes, consistent with alternative regimes of selective constraint. Rates of nonsynonymous substitution are higher in NADH dehydrogenase subunit 5 than in other protein-coding genes, and transitions exist in elevated proportions relative to transversions. Transitions appear to accumulate linearly with time in tRNA(Glu), and despite exhibiting the highest overall rate of divergence among species, there are no transversional changes in this gene. Finally, for resolving phylogenetic relationships among Fringilla taxa, the combined protein-coding data are broadly similar to those of the control region in terms of phylogenetic informativeness and statistical support.   相似文献   
4.
5.
6.
7.
After puberty, the thymus undergoes a dramatic loss in volume, in weight and in the number of thymocytes, a phenomenon termed age-associated thymic involution. Recently, it was reported that age-associated thymic involution did not occur in mice expressing a rearranged transgenic (Tg) TCRalphabeta receptor. This finding implied that an age-associated defect in TCR rearrangement was the major, if not the only, cause for thymic involution. Here, we examined thymic involution in three other widely used MHC class I-restricted TCRalphabeta Tg mouse strains and compared it with that in non-Tg mice. In all three TCRalphabeta Tg strains, as in control mice, thymocyte numbers were reduced by approximately 90% between 2 and 24 mo of age. The presence or absence of the selecting MHC molecules did not alter this age-associated cell loss. Our results indicate that the expression of a rearranged TCR alone cannot, by itself, prevent thymic involution. Consequently, other presently unknown factors must also contribute to this phenomenon.  相似文献   
8.

Background

Toll like receptors (TLR) play the central role in the recognition of pathogen associated molecular patterns (PAMPs). Mutations in the TLR1, TLR2 and TLR4 genes may change the ability to recognize PAMPs and cause altered responsiveness to the bacterial pathogens.

Results

The study presents association between TLR gene mutations and increased susceptibility to Mycobacterium avium subsp. paratuberculosis (MAP) infection. Novel mutations in TLR genes (TLR1- Ser150Gly and Val220Met; TLR2 – Phe670Leu) were statistically correlated with the hindrance in recognition of MAP legends. This correlation was confirmed subsequently by measuring the expression levels of cytokines (IL-4, IL-8, IL-10, IL-12 and IFN-γ) in the mutant and wild type moDCs (mocyte derived dendritic cells) after challenge with MAP cell lysate or LPS. Further in silico analysis of the TLR1 and TLR4 ectodomains (ECD) revealed the polymorphic nature of the central ECD and irregularities in the central LRR (leucine rich repeat) motifs.

Conclusion

The most critical positions that may alter the pathogen recognition ability of TLR were: the 9th amino acid position in LRR motif (TLR1–LRR10) and 4th residue downstream to LRR domain (exta-LRR region of TLR4). The study describes novel mutations in the TLRs and presents their association with the MAP infection.  相似文献   
9.
Acute lymphoblastic leukemia (ALL) is the most common hematological cancer in children. Although risk-adaptive therapy, CNS-directed chemotherapy, and supportive care have improved the survival of ALL patients, disease relapse is still the leading cause of cancer-related death in children. Therefore, new drugs are needed as frontline treatments in high-risk disease and as salvage agents in relapsed ALL. In this study, we report that purified sulforaphane, a natural isothiocyanate found in cruciferous vegetables, has anti-leukemic properties in a broad range of ALL cell lines and primary lymphoblasts from pediatric T-ALL and pre-B ALL patients. The treatment of ALL leukemic cells with sulforaphane resulted in dose-dependent apoptosis and G2/M cell cycle arrest, which was associated with the activation of caspases (3, 8, and 9), inactivation of PARP, p53-independent upregulation of p21CIP1/WAF1, and inhibition of the Cdc2/Cyclin B1 complex. Interestingly, sulforaphane also inhibited the AKT and mTOR survival pathways in most of the tested cell lines by lowering the levels of both total and phosphorylated proteins. Finally, the administration of sulforaphane to the ALL xenograft models resulted in a reduction of tumor burden, particularly following oral administration, suggesting a potential role as an adjunctive agent to improve the therapeutic response in high-risk ALL patients with activated AKT signaling.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号