首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   17篇
  140篇
  2023年   4篇
  2022年   1篇
  2021年   2篇
  2019年   1篇
  2018年   4篇
  2017年   2篇
  2016年   4篇
  2015年   5篇
  2014年   1篇
  2013年   14篇
  2012年   8篇
  2011年   8篇
  2010年   4篇
  2008年   6篇
  2007年   6篇
  2006年   7篇
  2005年   8篇
  2004年   3篇
  2003年   3篇
  2002年   6篇
  2001年   2篇
  2000年   3篇
  1999年   5篇
  1998年   2篇
  1997年   2篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
  1970年   1篇
  1965年   1篇
  1963年   1篇
  1962年   1篇
  1953年   1篇
排序方式: 共有140条查询结果,搜索用时 15 毫秒
1.
The lepidopteran mitochondrial control region: structure and evolution   总被引:8,自引:3,他引:5  
For several species of lepidoptera, most of the approximately 350-bp mitochondrial control-region sequences were determined. Six of these species are in one genus, Jalmenus; are closely related; and are believed to have undergone recent rapid speciation. Recent speciation was supported by the observation of low interspecific sequence divergence. Thus, no useful phylogeny could be constructed for the genus. Despite a surprising conservation of control-region length, there was little conservation of primary sequences either among the three lepidopteran genera or between lepidoptera and Drosophila. Analysis of secondary structure indicated only one possible feature in common--inferred stem loops with higher-than-random folding energies-- although the positions of the structures in different species were unrelated to regions of primary sequence similarity. We suggest that the conserved, short length of control regions is related to the observed lack of heteroplasmy in lepidopteran mitochondrial genomes. In addition, determination of flanking sequences for one Jalmenus species indicated (i) only weak support for the available model of insect 12S rRNA structure and (ii) that tRNA translocation is a frequent event in the evolution of insect mitochondrial genomes.   相似文献   
2.

Background  

The Dmbx1 gene is important for the development of the midbrain and hindbrain, and mouse gene targeting experiments reveal that this gene is required for mediating postnatal and adult feeding behaviours. A single Dmbx1 gene exists in terrestrial vertebrate genomes, while teleost genomes have at least two paralogs. We compared the loss of function of the zebrafish dmbx1a and dmbx1b genes in order to gain insight into the molecular mechanism by which dmbx1 regulates neurogenesis, and to begin to understand why these duplicate genes have been retained in the zebrafish genome.  相似文献   
3.
Sexual selection and ecological differences are important drivers of speciation. Much research has focused on female choice, yet the role of male competition in ecological speciation has been understudied. Here, we test how mating habitats impact sexual selection and speciation through male competition. Using limnetic and benthic species of threespine stickleback fish, we find that different mating habitats select differently on male traits through male competition. In mixed habitat with both vegetated and open areas, selection favours two trait combinations of male body size and nuptial colour: large with little colour and small with lots of colour. This matches what we see in reproductively isolated stickleback species, suggesting male competition could promote trait divergence and reproductive isolation. In contrast, when only open habitat exists, selection favours one trait combination, large with lots of colour, which would hinder trait divergence and reproductive isolation. Other behavioural mechanisms in male competition that might promote divergence, such as avoiding aggression with heterospecifics, are insufficient to maintain separate species. This work highlights the importance of mating habitats in male competition for both sexual selection and speciation.  相似文献   
4.
5.
Humans have seven APOBEC3 DNA cytosine deaminases. The activity of these enzymes allows them to restrict a variety of retroviruses and retrotransposons, but may also cause pro-mutagenic genomic uracil lesions. During interphase the APOBEC3 proteins have different subcellular localizations: cell-wide, cytoplasmic or nuclear. This implies that only a subset of APOBEC3s have contact with nuclear DNA. However, during mitosis, the nuclear envelope breaks down and cytoplasmic proteins may enter what was formerly a privileged zone. To address the hypothesis that all APOBEC3 proteins have access to genomic DNA, we analyzed the localization of the APOBEC3 proteins during mitosis. We show that APOBEC3A, APOBEC3C and APOBEC3H are excluded from condensed chromosomes, but become cell-wide during telophase. However, APOBEC3B, APOBEC3D, APOBEC3F and APOBEC3G are excluded from chromatin throughout mitosis. After mitosis, APOBEC3B becomes nuclear, and APOBEC3D, APOBEC3F and APOBEC3G become cytoplasmic. Both structural motifs as well as size may be factors in regulating chromatin exclusion. Deaminase activity was not dependent on cell cycle phase. We also analyzed APOBEC3-induced cell cycle perturbations as a measure of each enzyme’s capacity to inflict genomic DNA damage. AID, APOBEC3A and APOBEC3B altered the cell cycle profile, and, unexpectedly, APOBEC3D also caused changes. We conclude that several APOBEC3 family members have access to the nuclear compartment and can impede the cell cycle, most likely through DNA deamination and the ensuing DNA damage response. Such genomic damage may contribute to carcinogenesis, as demonstrated by AID in B cell cancers and, recently, APOBEC3B in breast cancers.  相似文献   
6.
7.
We have applied a new equilibration procedure for the atomic level simulation of a hydrated lipid bilayer to hydrated bilayers of dioleyl-phosphatidylcholine (DOPC) and palmitoyl-oleyl phosphatidylcholine (POPC). The procedure consists of alternating molecular dynamics trajectory calculations in a constant surface tension and temperature ensemble with configurational bias Monte Carlo moves to different regions of the configuration space of the bilayer in a constant volume and temperature ensemble. The procedure is applied to bilayers of 128 molecules of POPC with 4628 water molecules, and 128 molecules of DOPC with 4825 water molecules. Progress toward equilibration is almost three times as fast in central processing unit (CPU) time compared with a purely molecular dynamics (MD) simulation. Equilibration is complete, as judged by the lack of energy drift in 200-ps runs of continuous MD. After the equilibrium state was reached, as determined by agreement between the simulation volume per lipid molecule with experiment, continuous MD was run in an ensemble in which the lateral area was restrained to fluctuate about a mean value and a pressure of 1 atm applied normal to the bilayer surface. Three separate continuous MD runs, 200 ps in duration each, separated by 10,000 CBMC steps, were carried out for each system. Properties of the systems were calculated and averaged over the three separate runs. Results of the simulations are presented and compared with experimental data and with other recent simulations of POPC and DOPC. Analysis of the hydration environment in the headgroups supports a mechanism by which unsaturation contributes to reduced transition temperatures. In this view, the relatively horizontal orientation of the unsaturated bond increases the area per lipid, resulting in increased water penetration between the headgroups. As a result the headgroup-headgroup interactions are attenuated and shielded, and this contributes to the lowered transition temperature.  相似文献   
8.
A series of 6-alkoxy-4-anilinoquinazoline compounds was prepared and evaluated for in vitro inhibition of the erbB2 and EGFR kinase activity. The IC(50) values of the best compounds were below 0.10 uM. Further, several of these compounds inhibit the growth of erbB2 and EGFR over-expressing tumor cell lines at concentrations below 1 uM.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号