首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  2009年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
排序方式: 共有10条查询结果,搜索用时 687 毫秒
1
1.
Background. Previous studies have shown that Helicobacter pylori seroprevalence in Sjögren's syndrome is comparable with that of the general population. However, the origin of the chronic gastropathy associated with this syndrome and the role of local autoimmunity – possibly triggered by bacterial infection – in its pathogenesis remain unclear. Materials and Methods. We initially determined the prevalence of IgG anti H. pylori in dyspeptic subjects with and without Sjögren's syndrome. In subsets of both groups we then determined anti CagA and human tissue‐tested anticanalicular/antifoveolar autoantibodies. We also compared activity, atrophy and Mucosa Associated Lymphoid Tissue (MALT) scores, as well as symptoms, before and after bacterial eradication. Results. Prevalence of H. pylori in Sjögren's syndrome patients was similar to controls: 31/54 (57%) vs. 93/150 (62%). Anti CagA prevalence was also similar in the two groups. Twenty weeks after H. pylori eradication, histological activity decreased in both groups, however, atrophy and MALT decreased significantly only in controls. Sixteen months after H. pylori eradication, 75% of Sjögren's syndrome patients still complained of dyspepsia compared with 13% of controls. Finally, antigastric autoantibodies were present in 29% of tested Sjögren's syndrome patients vs. 28% of controls. Conclusions. H. pylori infection was equally prevalent among dyspeptic Sjögren's syndrome patients and dyspeptic controls. Likewise, there were no differences regarding anti CagA prevalence or antigastric autoantibodies among the two groups. The persistence of symptoms as well as of the lymphocytic infiltration and atrophy after H. pylori eradication in Sjögren's syndrome may underlie the ‘endogenous’ and still unknown nature of the gastropathy in this condition.  相似文献   
2.
Progesterone provides neuroprotection after spinal cord injury, but the molecular mechanisms involved in this effect are not completely understood. In this work, expression of two binding proteins for progesterone was studied in intact and injured rat spinal cord: the classical intracellular progesterone receptor (PR) and 25-Dx, a recently discovered progesterone membrane binding site. RT-PCR was employed to determine their relative mRNA levels, whereas cellular localization and relative protein levels were investigated by immunocytochemistry. We observed that spinal cord PR mRNA was not up-regulated by estrogen in contrast to what is observed in many brain areas and in the uterus, but was abundant as it amounted to a third of that measured in the estradiol-stimulated uterus. In male rats with complete spinal cord transection, levels of PR mRNA were significantly decreased, while those of 25-Dx mRNA remained unchanged with respect to control animals. When spinal cord-injured animals received progesterone treatment during 72 h, PR mRNA levels were not affected and remained low, whereas 25-Dx mRNA levels were significantly increased. Immunostaining of PR showed its intracellular localization in both neurons and glial cells, whereas 25-Dx immunoreactivity was localized to cell membranes of dorsal horn and central canal neurons. As the two binding proteins for progesterone differ with respect to their response to lesion, their regulation by progesterone, their cellular and subcellular localizations, their functions may differ under normal and pathological conditions. These observations point to a novel and potentially important role of the progesterone binding protein 25-Dx after injury of the nervous system and suggest that the neuroprotective effects of progesterone may not necessarily be mediated by the classical progesterone receptor but may involve distinct membrane binding sites.  相似文献   
3.
Progesterone (PROG) provides neuroprotection to the injured central and peripheral nervous system. These effects may be due to regulation of myelin synthesis in glial cells and also to direct actions on neuronal function. Both types of cells express classical intracellular PROG receptors (PR), while neurons additionally express the PROG membrane-binding site called 25-Dx. In motoneurons from rats with spinal cord injury (SCI), PROG restores to normal the deficient levels of choline acetyl-transferase and of alpha3 subunit Na,K-ATPase mRNA, while levels of the growth associated protein GAP-43 mRNA are further stimulated. Recent studies suggest that neurotrophins are possible mediators of hormone action, and in agreement with this assumption, PROG treatment of rats with SCI increases the expression of brain-derived neurotrophic factor (BDNF) at both the mRNA and protein levels in ventral horn motoneurons. In situ hybridization (ISH) has shown that SCI reduces BDNF mRNA levels by 50% in spinal motoneurons, while PROG administration to injured rats (4mg/kg/day during 3 days, s.c.) elicits a three-fold increase in grain density. In addition to enhancement of mRNA levels, PROG increases BDNF immunoreactivity in perikaryon and cell processes of motoneurons of the lesioned spinal cord, and also prevents the lesion-induced chromatolytic degeneration of spinal cord motoneurons as determined by Nissl staining. Our findings strongly indicate that motoneurons of the spinal cord are targets of PROG, as confirmed by the expression of PR and the regulation of molecular parameters. PROG enhancement of endogenous neuronal BDNF could provide a trophic environment within the lesioned spinal cord and might be part of the PROG activated-pathways to provide neuroprotection. Thus, PROG treatment constitutes a new approach to sustain neuronal function after injury.  相似文献   
4.
A mapping population of Paspalum simplex segregating for apomixis (asexual reproduction through seeds) was screened with AFLPs to find apomixis-linked markers. Four AFLPs linked to apomixis in coupling phase were found. Three of them did not show recombinants among the 87 individuals of the mapping population, whereas the other was more loosely linked. Integrating the AFLP data with those obtained previously with rice RFLP anchor markers, a map was drawn for the chromosome region of P. simplex encompassing apomixis. We cloned the three AFLPs tightly linked with apomixis into plasmid vectors and used them as probes to hybridize the restriction digested DNA of the mapping population. Two of them revealed RFLP bands linked to apomixis together with other alleles, whereas one was proven to belong to a hemizygous portion of the apomixis locus. The total picture resulting from AFLP and RFLP analyses was that a cluster of markers tightly linked with apomixis was detected in P simplex together with two other markers that were more loosely linked. These two markers enclosed a relatively large chromosome segment characterized by strong repression of recombination. The block of recombination may have caused sequence divergence and, therefore, hemizygosity of some regions belonging to the apomixis-controlling chromosome segment of P. simplex. The potential of developing an apomixis-specific sequence for screening large-fragment libraries for the physical isolation of the locus encompassing apomixis is discussed.  相似文献   
5.
Apomixis is a form of asexual reproduction that in plants leads to the production of seed progeny that are exact copies of the mother individual. A mapping population generated by backcrossing a sexual with an apomictic genotype of Paspalum simplex, both at the tetraploid level, was used to find markers co-segregating with apomixis. Genetic analysis showed that apomixis is under the control of a single dominant allele assuming a random chromatid assortment. Five rice markers, mapped in the telomeric region of the long arm of rice chromosome 12, showed tight linkage with apomixis. Genetic and molecular data strongly indicate that the potentiality to express apomixis in P. simplex is given by a relatively large chromosome segment that is inherited as a single genetic unit.  相似文献   
6.
Progesterone neuroprotection has been reported in experimental brain, peripheral nerve and spinal cord injury. To investigate for a similar role in neurodegeneration, we studied progesterone effects in the Wobbler mouse, a mutant presenting severe motoneuron degeneration and astrogliosis of the spinal cord. Implant of a single progesterone pellet (20 mg) during 15 days produced substantial changes in Wobbler mice spinal cord. Morphologically, motoneurons of untreated Wobbler mice showed severe vacuolation of intracellular organelles including mitochondria. In contrast, neuropathology was less pronounced in Wobbler mice receiving progesterone, together with a reduction of vacuolated cells and preservation of mitochondrial ultrastructure. Determination of mRNAs for the 3 and β1 subunits of neuronal Na, K-ATPase, showed that mRNA levels in untreated mice were significantly reduced, whereas progesterone therapy re-established the expression of both subunits. Additionally, progesterone treatment of Wobbler mice attenuated the aberrant expression of the growth-associated protein (GAP-43) mRNA which otherwise occurred in motoneurons of untreated animals. The hormone, however, was without effect on astrocytosis of Wobbler mice, determined by glial fibrillary acidic protein (GFAP)-immunostaining. Lastly, progesterone treatment of Wobbler mice enhanced grip strength and prolonged survival at the end of the 15-day observation period. Recovery of morphology and molecular motoneuron parameters of Wobbler mice receiving progesterone, suggest a new and important role for this hormone in the prevention of spinal cord neurodegenerative disorders.  相似文献   
7.
(1) Following acute spinal cord injury, progesterone modulates several molecules essential for motoneuron function, although the morphological substrates for these effects are unknown. (2) The present study analyzed morphological changes in motoneurons distal to the lesion site from rats with or without progesterone treatment. We employed electron microscopy to study changes in nucleus and cytoplasm and immunohistochemistry for the microtubule-associated protein 2 (MAP2) for changes in cytoskeleton. (3) After spinal cord injury, the nucleoplasm appeared more finely dispersed resulting in reduced electron opacity and the nucleus adopted an eccentric position. Changes of perikarya included dissolution of Nissl bodies and dissociation of polyribosomes (chromatolysis). After progesterone treatment for 3 days, the deafferented motoneurons now presented a clumped nucleoplasm, a better-preserved rough endoplasmic reticulum and absence of chromatolysis. Progesterone partially prevented development of nuclear eccentricity. Whereas 50% of injured motoneurons showed nuclear eccentricity, only 16% presented this phenotype after receiving progesterone. Additionally, injured rats showed reduced immunostaining for MAP2 in dendrites, pointing to cytoskeleton abnormalities, whereas progesterone treatment attenuated the injury-induced loss of MAP2. (4) Our data indicated that progesterone maintained in part neuronal ultrastructure, attenuated chromatolysis, and preclude the loss of MAP2, suggesting a protective effect during the early phases of spinal cord injury.  相似文献   
8.
Progesterone (P4) can be synthesized in both central and peripheral nervous system (PNS) and exerts trophic effects in the PNS. To study its potential effects in the spinal cord, we investigated P4 modulation (4 mg/kg/day for 3 days) of two proteins responding to injury: NADPH-diaphorase, an enzyme with nitric oxide synthase activity, and glial fibrillary acidic protein (GFAP), a marker of astrocyte reactivity. The proteins were studied at three levels of the spinal cord from rats with total transection (TRX) at T10: above (T5 level), below (L1 level) and caudal to the lesion (L3 level). Equivalent regions were dissected in controls. The number and area of NADPH-diaphorase active or GFAP immunoreactive astrocytes/0.1 mm(2) in white matter (lateral funiculus) or gray matter (Lamina IX) was measured by computerized image analysis. In controls, P4 increased the number of GFAP-immunoreactive astrocytes in gray and white matter at all levels of the spinal cord, while astrocyte area also increased in white matter throughout and in gray matter at the T5 region. In control rats P4 did not change NADPH-diaphorase activity. In rats with TRX and not receiving hormone, a general up-regulation of the number and area of GFAP-positive astrocytes was found at all levels of the spinal cord. In rats with TRX, P4 did not change the already high GFAP-expression. In the TRX group, instead, P4 increased the number and area of NADPH-diaphorase active astrocytes in white and gray matter immediately above and below, but not caudal to the lesion. Thus, the response of the two proteins to P4 was conditioned by environmental factors, in that NADPH-diaphorase activity was hormonally modulated in astrocytes reacting to trauma, whereas up-regulation of GFAP by P4 was produced in resting astrocytes from non-injured animals.  相似文献   
9.
Three somatic hybrid plants produced by protoplast fusion between Medicago sativa and each of the three species Medicago coerulea, Medicago falcata and Medicago arborea have been analysed for the composition of their mitochondrial DNA. Restriction fragment length polymorphism (RFLP) analysis of mitochondrial genes in somatic hybrids and their parental lines showed various degrees of rearrangement. The M. sativa+M. coerulea hybrid retained all of the M. coerulea-specific bands but lost all the major M. sativa- specific bands. The M. sativa+M. falcata hybrid showed only M. sativa-specific bands together with non-parental bands, and the M. sativa+M. arborea hybrid showed a partial incorporation of bands from both parents together with non-parental bands. The three different outcomes were attributed mainly to differences in the genetic distance between the parents of each hybrid. Analysis of the sexual progeny of the M. sativa+M. coerulea hybrid showed that a residual mitochondrial DNA subunit of M. sativa was retained in the hybrid cytoplasm. This subunit was amplified and inherited in a mutually exclusive, allelic-like fashion with its M. coerulea homologous counterpart in the sexual progeny of the hybrid. Possible mechanisms for the partitioning of mitochondrial DNA in the generative lineage of the somatic hybrids are discussed in relation to the creation of new nucleus-cytoplasm assortments otherwise impossible to obtain by a sexual cross in Medicago. Received: 5 January 2001 / Accepted: 23 March 2001  相似文献   
10.
Steroids influence the activity and plasticity of neurons and glial cells during early development, and they continue to exert trophic and protective effects in the adult nervous system. Steroids are produced by the gonads and adrenal glands and reach the brain, the spinal cord and the peripheral nerves via the bloodstream. However, some of them, named “neurosteroids”, can also be synthesized within the nervous system. They include pregnenolone, progesterone, dehydroepiandrosterone and their reduced metabolites and sulfate esters. Little is known concerning the regulation of steroid synthesis in the nervous system, which involves interactions between different cell types. For example, the synthesis of progesterone by Schwann cells in peripheral nerves is regulated by a diffusible neuronal signal. Neurotrophic and neuroprotective effects of steroids have been documented both in cell culture and in vivo. PROG plays an important role in the neurological recovery from traumatic injury of the brain and spinal cord by mechanisms involving protection from excitotoxic cell death, lipid peroxydation and the induction of specific enzymes. After transection of the rat spinal cord, PROG increases the number of nitric oxide synthase expressing astrocytes immediately above and below the lesion. PROG also plays an important role in the formation of new myelin sheaths. This has been shown in the regenerating mouse sciatic nerve after lesion and in cocultures of sensory neurons and Schwann cells. PROG promotes myelination by activating the expression of genes coding for myelin proteins. The modulation of neurostransmitter receptors, in particular the type A γ-aminobutyric acid, the N-methyl-D-aspartate and the sigma 1 receptors, is involved in the psychopharmacological effects of steroids and allows to explain their anticonvulsant, anxiolytic, antidepressive and sedative effects as well as their influence on memory. Pregnenolone sulfate has been shown to reverse age-related deficits in spatial memory performance and to have protective effects on memory in different models of amnesia.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号