首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  2023年   1篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2013年   1篇
  2009年   1篇
  2008年   2篇
排序方式: 共有11条查询结果,搜索用时 46 毫秒
1.
Origins of Life and Evolution of Biospheres - Understanding the emergence of metabolic pathways is key to unraveling the factors that promoted the origin of life. One popular view is that protein...  相似文献   
2.
3.
The thermodynamic potential for the abiotic synthesis of the five common nucleobases (adenine, cytosine, guanine, thymine, and uracil) and two monosaccharides (ribose and deoxyribose) from formaldehyde and hydrogen cyanide has been quantified under temperature, pressure, and bulk composition conditions that are representative of hydrothermal systems. The activities of the precursor molecules (formaldehyde and hydrogen cyanide) required to evaluate the thermodynamics of biomolecule synthesis were computed using the concentrations of aqueous N2, CO, CO2 and H2 reported in the modern Rainbow hydrothermal system. The concentrations of precursor molecules that can be synthesized are strongly dependent on temperature with larger concentrations prevailing at lower temperatures. Similarly, the thermodynamic drive to synthesize nucleobases, ribose and deoxyribose varies considerably as a function of temperature: all of the biomolecules considered in this study are thermodynamically favored to be synthesized throughout the temperature range from 0°C to between 150°C and 250°C, depending on the biomolecule. Furthermore, activity diagrams have been generated to illustrate that activities in the range of 10−2– 10−6 for nucleobases, ribose and deoxyribose can be in equilibrium with a range of precursor molecule activities at 150°C and 500 bars. The results presented here support the notion that hydrothermal systems could have played a fundamental role in the origin of life, and can be used to plan and constrain experimental investigation of the abiotic synthesis of nucleic-acid related biomolecules.  相似文献   
4.
Microbial ecology within oligotrophic marine sediment is poorly understood, yet is critical for understanding geochemical cycles. Here, 16S rRNA sequences from RNA and DNA inform the structure of active and total microbial communities in oligotrophic sediment on the western flank of the Mid-Atlantic Ridge. Sequences identified as Bacillariophyta chloroplast were detected within DNA, but undetectable within RNA, suggesting preservation in 5.6-million-year-old sediment. Statistical analysis revealed that RNA-based microbial populations correlated significantly with nitrogen concentrations, whereas DNA-based populations did not correspond to measured geochemical analytes. Bioenergetic calculations determined which metabolisms could yield energy in situ, and found that denitrification, nitrification, and nitrogen fixation were all favorable. A metagenome was produced from one sample, and included genes mediating nitrogen redox processes. Nitrogen respiration by active bacteria is an important metabolic strategy in North Pond sediments, and could be widespread in the oligotrophic sedimentary biosphere.  相似文献   
5.
Thermodynamic modelling of organic synthesis has largely been focused on deep-sea hydrothermal systems. When seawater mixes with hydrothermal fluids, redox gradients are established that serve as potential energy sources for the formation of organic compounds and biomolecules from inorganic starting materials. This energetic drive, which varies substantially depending on the type of host rock, is present and available both for abiotic (outside the cell) and biotic (inside the cell) processes. Here, we review and interpret a library of theoretical studies that target organic synthesis energetics. The biogeochemical scenarios evaluated include those in present-day hydrothermal systems and in putative early Earth environments. It is consistently and repeatedly shown in these studies that the formation of relatively simple organic compounds and biomolecules can be energy-yielding (exergonic) at conditions that occur in hydrothermal systems. Expanding on our ability to calculate biomass synthesis energetics, we also present here a new approach for estimating the energetics of polymerization reactions, specifically those associated with polypeptide formation from the requisite amino acids.  相似文献   
6.
An experimental study has been carried out on the stability of adenine (one of the five nucleic acid bases) under hydrothermal conditions. The experiments were performed in sealed autoclaves at 300 degrees C under fugacities of CO(2), N(2) and H(2) supposedly representative of those in marine hydrothermal systems on the early Earth. The composition of the gas phase was obtained from the degradation of oxalic acid, sodium nitrite and ammonium chloride, and the oxidation of metallic iron. The results of the experiments indicate that after 200 h, adenine is still present in detectable concentration in the aqueous phase. In fact, the concentration of adenine does not seem to be decreasing after approximately 24 h, which suggests that an equilibrium state may have been established with the inorganic constituents of the hydrothermal fluid. Such a conclusion is corroborated by independent thermodynamic calculations.  相似文献   
7.
The biology literature is rife with misleading information on how to quantify catabolic reaction energetics. The principal misconception is that the sign and value of the standard Gibbs energy () define the direction and energy yield of a reaction; they do not. is one part of the actual Gibbs energy of a reaction (ΔGr ), with a second part accounting for deviations from the standard composition. It is also frequently assumed that applies only to 25 °C and 1 bar; it does not. is a function of temperature and pressure. Here, we review how to determine ΔGr as a function of temperature, pressure and chemical composition for microbial catabolic reactions, including a discussion of the effects of ionic strength on ΔGr and highlighting the large effects when multi-valent ions are part of the reaction. We also calculate ΔGr for five example catabolisms at specific environmental conditions: aerobic respiration of glucose in freshwater, anaerobic respiration of acetate in marine sediment, hydrogenotrophic methanogenesis in a laboratory batch reactor, anaerobic ammonia oxidation in a wastewater reactor and aerobic pyrite oxidation in acid mine drainage. These examples serve as templates to determine the energy yields of other catabolic reactions at environmentally relevant conditions.  相似文献   
8.
Chemotrophic microorganisms gain energy for cellular functions by catalyzing oxidation–reduction (redox) reactions that are out of equilibrium. Calculations of the Gibbs energy ( ΔG r ) can identify whether a reaction is thermodynamically favourable and quantify the accompanying energy yield at the temperature, pressure and chemical composition in the system of interest. Based on carefully calculated values of ΔG r , we predict a novel microbial metabolism – sulfur comproportionation (3H2S + + 2H+ ⇌ 4S0 + 4H2O). We show that at elevated concentrations of sulfide and sulfate in acidic environments over a broad temperature range, this putative metabolism can be exergonic ( ΔG r <0), yielding ~30–50 kJ mol−1. We suggest that this may be sufficient energy to support a chemolithotrophic metabolism currently missing from the literature. Other versions of this metabolism, comproportionation to thiosulfate (H2S + ⇌ + H2O) and to sulfite (H2S + 3 ⇌ 4 + 2H+), are only moderately exergonic or endergonic even at ideal geochemical conditions. Natural and impacted environments, including sulfidic karst systems, shallow-sea hydrothermal vents, sites of acid mine drainage, and acid–sulfate crater lakes, may be ideal hunting grounds for finding microbial sulfur comproportionators.  相似文献   
9.
Obesity and smoking represent the leading preventable causes of morbidity and mortality in the United States. This study compared the prevalence of obesity among smokers seeking cessation treatment (n = 1,428) vs. a general population (n = 4,081) of never smokers, former smoker, and current smokers. Data from treatment‐seeking smokers in the Wisconsin Smokers' Health Study (WSHS) and individuals who completed the National Health and Nutrition Examination Survey (NHANES) 2005–2006 were pooled and obesity rates and other health characteristics were compared. The prevalence of obesity was significantly higher among WSHS treatment‐seeking smokers (36.8%) vs. NHANES current smokers (29.6%), but the obesity rates of WSHS treatment‐seeking smokers did not differ from NHANES former smokers (36.5%) or never smokers (36.5%). Treatment‐seeking smokers were more likely to be female and to have higher educational attainment compared to NHANES participants. Analysis of health characteristics revealed that treatment‐seeking smokers had higher levels of dietary fiber and vitamin C and lower blood levels of total cholesterol, triglycerides, and fasting glucose compared to NHANES current smokers. Results suggest that treatment‐seeking smokers may have a different health profile than current smokers in the general population. Health care providers should be aware of underlying heath issues, particularly obesity, in patients seeking smoking cessation treatment.  相似文献   
10.
Microorganisms buried in marine sediments are known to endure starvation over geologic timescales. However, the mechanisms of how these microorganisms cope with prolonged energy limitation is unknown and therefore yet to be captured in a quantitative framework. Here, we present a novel mathematical model that considers (a) the physiological transitions between the active and dormant states of microorganisms, (b) the varying requirement for maintenance power between these phases, and (c) flexibility in the provenance (i.e., source) of energy from exogenous and endogenous catabolism. The model is applied to sediments underlying the oligotrophic South Pacific Gyre where microorganisms endure ultra‐low fluxes of energy for tens of millions of years. Good fits between model simulations and measurements of cellular carbon and organic carbon concentrations are obtained and are interpreted as follows: (a) the unfavourable microbial habitat in South Pacific Gyre sediments triggers rapid mortality and a transition to dormancy; (b) there is minimal biomass growth, and organic carbon consumption is dominated by catabolism to support maintenance activities rather than new biomass synthesis; (c) the amount of organic carbon that microorganisms consume for maintenance activities is equivalent to approximately 2% of their carbon biomass per year; and (d) microorganisms must rely solely on exogenous rather than endogenous catabolism to persist in South Pacific Gyre sediments over long timescales. This leads us to the conclusion that under oligotrophic conditions, the fitness of an organism is determined by its ability to simply stay alive, rather than to grow. This modelling framework is designed to be flexible for application to other sites and habitats, and thus serves as a new quantitative tool for determining the habitability of and an ultimate limit for life in any environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号