首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2019年   1篇
  2017年   1篇
  2005年   1篇
  1996年   1篇
排序方式: 共有4条查询结果,搜索用时 78 毫秒
1
1.
2.
Potassium channels control the repolarization of nerve terminals and thus play important roles in the control of synaptic transmission. Here we describe the effects of mutations in theslowpoke gene, which is the structural gene for a calcium activated potassium channel, on transmitter release at the neuromuscular junction inDrosophila melanogaster. Surprisingly, we find that theslowpoke mutant exhibits reduced transmitter release compared to normal. Similarly, theslowpoke mutation significantly suppresses the increased transmitter release conferred either by a mutation inShaker or by application of 4-aminopyridine, which blocks theShaker-encoded potassium channel at theDrosophila nerve terminal. Furthermore, theslowpoke mutation suppresses the striking increase in transmitter release that occurs following application of 4-aminopyridine to theether a go-go mutant. This suppression is most likely the result of a reduction of Ca2+ influx into the nerve terminal in theslowpoke mutant. We hypothesize that the effects of theslowpoke mutation are indirect, perhaps resulting from increased Ca2+ channel inactivation, decreased Na+ or Ca2+ channel localization or gene expression, or by increases in the expression or activity of potassium channels distinct fromslowpoke.  相似文献   
3.
Diacylglycerol Kinases (DGKs) are a family of enzymes that regulate the levels of different pools of diacylglycerol (DAG), affecting DAG-mediated signal transduction. Since DAG is known to play several important regulatory roles in granulocyte physiology, we investigated the expression pattern of DGK isoforms throughout differentiation of HL-60 cells to granulocytes. HL-60 cells were incubated with 1.25% dimethyl-sulfoxide (DMSO) to initiate differentiation and total RNA isolated at different time points. DGK expression was assessed through Northern blot, end-point PCR, and real-time PCR. The non-selective inhibitors R59022 and R59949 were used to block DGK at different time points throughout differentiation. CD11b and GPI-80, reactive oxygen species (ROS) generation, changes in the cell cycle, and apoptosis were used as markers of differentiation. Of the nine isoforms of DGK evaluated (alpha, delta, epsilon, gamma, zeta, beta, theta;, iota, eta), only five (alpha, delta, epsilon, gamma, and zeta) were expressed in HL-60 cells. DGKalpha was virtually absent in non-differentiated cells, but was markedly upregulated throughout differentiation. The other isoforms (delta, epsilon, gamma, and zeta) were expressed in undifferentiated HL-60 cells but were substantially decreased throughout differentiation. Non-selective blocking of DGK with R59022 and R59949 led to acceleration of differentiation, reducing the time necessary to observe upregulation of CD11b, GPI-80 and generation of ROS by 50%. Likewise, the cell cycle was disrupted when DGK isoforms were inhibited. These results provide evidence that DGK levels are dynamically regulated throughout differentiation and that expression of DGKs play an important regulatory function during the differentiation of neutrophils.  相似文献   
4.
For commercial protein therapeutics, Chinese hamster ovary (CHO) cells have an established history of safety, proven capability to express a wide range of therapeutic proteins and high volumetric productivities. Expanding global markets for therapeutic proteins and increasing concerns for broadened access of these medicines has catalyzed consideration of alternative approaches to this platform. Reaching these objectives likely will require an order of magnitude increase in volumetric productivity and a corresponding reduction in the costs of manufacture. For CHO-based manufacturing, achieving this combination of targeted improvements presents challenges. Based on a holistic analysis, the choice of host cells was identified as the single most influential factor for both increasing productivity and decreasing costs. Here we evaluated eight wild-type eukaryotic micro-organisms with prior histories of recombinant protein expression. The evaluation focused on assessing the potential of each host, and their corresponding phyla, with respect to key attributes relevant for manufacturing, namely (a) growth rates in industry-relevant media, (b) adaptability to modern techniques for genome editing, and (c) initial characterization of product quality. These characterizations showed that multiple organisms may be suitable for production with appropriate engineering and development and highlighted that yeast in general present advantages for rapid genome engineering and development cycles.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号