首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  3篇
  1992年   2篇
  1990年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
The correlation of the effects of vitamin K3 and dicumarol (ananti-vitamin K in pharmaceutical applications) on the transplasmamembrane electrical potential difference of maize roots withthe reduction of the artificial electron acceptors hexacyanoferrate(III) or hexabromoiridate (IV) and the concomitant enhancementof acidification of the incubation medium was investigated. Vitamin K3 depolarized the plasma membrane of Zea mays L. roots,while dicumarol had no significant effect on the membrane potential.Plants treated with vitamin K3 for 30 min followed by intenserinsing showed higher reduction of hexabromoiridate (IV) thanhexacyanoferrate (III), as well as a stimulated acidificationof the incubation medium. Depolarization of the plasma membraneby hexacyanoferrate (III) or hexabromoiridate (IV) decreasedafter an incubation with vitamin K3. Pretreatment with dicumarolcaused an inhibition of hexacyanoferrate (III) reduction andmedium acidification as well as depolarization by K3. The reductionof hexabromoiridate (IV) was not affected by dicumarol pretreatment.The proton secretion associated with the reduction was slightlylowered. According to our results, it seems possible that vitaminK3 acts as an electron acceptor for the plasmalemma electrontransport system of maize roots whereas dicumarol appears toinhibit electron and proton transport. Key words: Vitamin K3, dicumarol, plasmalemma redox system, Zea mays L., membrane potential  相似文献   
2.
The effects of vitamin K3 or dicumarol on plasma membrane boundhexacyanoferrate (III) and hexabromoiridate (IV) reductase activityand on the H+ pumping rate were investigated. Incubation withvitamin K3 followed by intense rinsing stimulated the subsequentreduction of hexabromoiridate (IV) and hexacyanoferrate (III)as well as proton secretion induced by external electron-acceptors,while pretreatment with dicumarol inhibited proton secretioninduced by redox activity and hexacyanoferrate (III) reductionrate, but not the effects of hexabromoiridate (IV). A 30 minincubation in 0·2 mM K3 or dicumarol, followed by rinsing,inhibited H+ secretion for about 2 d. Incubation for more than12 h in 0·1 mM dicumarol or 0·2 mM K3 caused lethalinjury to the root cells. Key words: Vitamin K.3, dicumarol, plasmalemma redox system, Zea mays L., proton pump  相似文献   
3.
Three artificial electron acceptors of different Eo and charge,hexacyanoferrate (III) (K3Fe(CN)6), hexachloroiridate (IV) (K2IrCl6),and hexabromoiridate (IV) (K2IrBr6), were compared with respectto their rate of reduction by roots of Zea mays L., the concomitantproton secretion, and to the effect on plasmalemma depolarization. It has been shown that these plasma membrane impermeable electronacceptors were reduced by a plasmalemma reductase activity.At low concentrations proton secretion was slightly inhibited,at higher concentrations, however, the rate of proton secretionwas stimulated. The root cell plasmalemma showed a transientdepolarization after addition of all three electron acceptors.The depolarization was concentration-dependent for the iridatecomplexes but not for hexacyanoferrate (III). For both iridatecomplexes maximum depolarization was reached at 50 µmoldm–3. A hypothetical model as an explanation of the redox dependentproton secretion will be given. Key words: Hexachloroiridate (IV), hexabromoiridate (IV), hexacyanoferrate (III), plasmalemma redox, membrane potential, Zea mays  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号