首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   1篇
  2021年   1篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2013年   1篇
  2012年   1篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2005年   1篇
  2003年   2篇
  2002年   2篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1977年   1篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
1.
Conversion of paper sludge to ethanol was investigated with the objective of operating under conditions approaching those expected of an industrial process. Major components of the bleached Kraft sludge studied were glucan (62 wt.%, dry basis), xylan (11.5%), and minerals (17%). Complete recovery of glucose during compositional analysis required two acid hydrolysis treatments rather than one. To avoid the difficulty of mixing unreacted paper sludge, a semicontinuous solids-fed laboratory bioreactor system was developed. The system featured feeding at 12-h intervals, a residence time of 4 days, and cellulase loading of 15 to 20 FPU/g cellulose. Sludge was converted to ethanol using simultaneous saccharification and fermentation (SSF) featuring a -glucosidase-supplemented commercial cellulase preparation and glucose fermentation by Saccharomyces cerevisiea. SSF was carried out for a period of 4 months in a first-generation system, resulting in an average ethanol concentration of 35 g/L. However, steady state was not achieved and operational difficulties were encountered. These difficulties were avoided in a retrofitted design that was operated for two 1-month runs, achieving steady state with good material balance closure. Run 1 with the retrofitted reactor produced 50 g/L ethanol at a cellulose conversion of 74%. Run 2 produced 42 g/L ethanol at a conversion of 92%. For run 2, the ethanol yield was 0.466 g ethanol/g glucose equivalent fermented and >94% of the xylan fed to the reactor was solubilized to a mixture of xylan oligomers and xylose.  相似文献   
2.
Pluripotent human stem cells isolated from early embryos represent a potentially unlimited source of many different cell types for cell-based gene and tissue therapies [1-3]. Nevertheless, if the full potential of cell lines derived from donor embryos is to be realised, the problem of donor-recipient tissue matching needs to be overcome. One approach, which avoids the problem of transplant rejection, would be to establish stem cell lines from the patient's own cells through therapeutic cloning [3,4]. Recent studies have shown that it is possible to transfer the nucleus from an adult somatic cell to an unfertilised oocyte that is devoid of maternal chromosomes, and achieve embryonic development under the control of the transferred nucleus [5-7]. Stem cells isolated from such a cloned embryo would be genetically identical to the patient and pose no risk of immune rejection. Here, we report the isolation of pluripotent murine stem cells from reprogrammed adult somatic cell nuclei. Embryos were generated by direct injection of mechanically isolated cumulus cell nuclei into mature oocytes. Embryonic stem (ES) cells isolated from cumulus-cell-derived blastocysts displayed the characteristic morphology and marker expression of conventional ES cells and underwent extensive differentiation into all three embryonic germ layers (endoderm, mesoderm and ectoderm) in tumours and in chimaeric foetuses and pups. The ES cells were also shown to differentiate readily into neurons and muscle in culture. This study shows that pluripotent stem cells can be derived from nuclei of terminally differentiated adult somatic cells and offers a model system for the development of therapies that rely on autologous, human pluripotent stem cells.  相似文献   
3.
Transglutaminase type 2 (TG2) is a ubiquitously expressed member of the transglutaminase family, capable of mediating a transamidation reaction between a variety of protein substrates. TG2 also has a unique role as a G-protein with GTPase activity. In response to GDP/GTP binding and increases in intracellular calcium levels, TG2 can undergo a large conformational change that reciprocally modulates the enzymatic activities of TG2. We have generated a TG2 biosensor that allows for quantitative assessment of TG2 conformational changes in live cells using Förster resonance energy transfer (FRET), as measured by fluorescence lifetime imaging microscopy (FLIM). Quantifying FRET efficiency with this biosensor provides a robust assay to quickly measure the effects of cell stress, changes in calcium levels, point mutations and chemical inhibitors on the conformation and localization of TG2 in living cells. The TG2 FRET biosensor was validated using established TG2 conformational point mutants, as well as cell stress events known to elevate intracellular calcium levels. We demonstrate in live cells that inhibitors of TG2 transamidation activity can differentially influence the conformation of the enzyme. The irreversible inhibitor of TG2, NC9, forces the enzyme into an open conformation, whereas the reversible inhibitor CP4d traps TG2 in the closed conformation. Thus, this biosensor provides new mechanistic insights into the action of two TG2 inhibitors and defines two new classes based on ability to alter TG2 conformation in addition to inhibiting transamidation activity. Future applications of this biosensor could be to discover small molecules that specifically alter TG2 conformation to affect GDP/GTP or calcium binding.  相似文献   
4.
The ability to generate human induced pluripotent stem cells (iPSCs) has opened new avenues for human disease modelling and therapy. The aim of our study was to determine research participants’ understanding of the information given when donating skin biopsies for the generation of patient-specific iPSCs. A customised 35-item questionnaire based on previous iPSC consent guidelines was sent to participants who had previously donated samples for iPSC research. The questionnaire asked pertinent demographic details, participants' motivation to take part in iPSC research and their attitudes towards related ethical issues. 234 participants were contacted with 141 (60.3 %) complete responses received. The median duration between recruitment and follow-up questioning was 313 days (range 10–573 days). The majority of participants (n = 129, 91.5 %) believed they understood what a stem cell was; however, only 22 (16.1 %) correctly answered questions related to basic stem cell properties. We found no statistically significant difference in responses from participants with different levels of education, or those with a health sciences background. The poor understanding amongst participants of iPSC research is unlikely to be unique to our study and may impact future research if not improved. As such, there is a need to develop an easily understood yet comprehensive consent process to ensure ongoing ethical progress of iPSC biobanking.  相似文献   
5.
Typical preparation of seed samples for infrared (IR) microspectroscopy involves imbibition of the seed for varying time periods followed by cryosectioning. Imbibition, however, may initiate germination even at 4° C with associated changes in the chemistry of the sample. We have found that it is possible to section seeds that are sufficiently hard, such as soybeans, on a standard laboratory microtome without imbibition. The use of dry sectioning of unimbibed seeds is reported here, as well as a comparison of different mounting media and modes of analysis. Glycerol, Tissue-Tek, and ethanol were used as mounting media, and the quality of the resulting spectra was assessed. Ethanol was the preferred mountant, because it dried quickly with no residue and thus did not interfere with the spectrum of interest. Analysis in transmission mode using barium fluoride windows to hold the samples was compared with transmission-reflection analysis with sections mounted on special infrared-reflecting slides. The two modes of analysis performed well in different regions of the spectrum. The mode of analysis (transmission vs. transmission-reflection) should be based on the components of greatest interest in the sample.  相似文献   
6.
Anti-tumor therapy with macroencapsulated endostatin producer cells   总被引:1,自引:0,他引:1  

Background  

Theracyte is a polytetrafluoroethylene membrane macroencapsulation system designed to induce neovascularization at the tissue interface, protecting the cells from host's immune rejection, thereby circumventing the problem of limited half-life and variation in circulating levels. Endostatin is a potent inhibitor of angiogenesis and tumor growth. Continuous delivery of endostatin improves the efficacy and potency of the antitumoral therapy. The purpose of this study was to determine whether recombinant fibroblasts expressing endostatin encapsulated in Theracyte immunoisolation devices can be used for delivery of this therapeutic protein for treatment of mice bearing B16F10 melanoma and Ehrlich tumors.  相似文献   
7.
8.
9.
10.

Background

The ideal malaria parasite populations for initial mapping of genomic regions contributing to phenotypes such as drug resistance and virulence, through genome-wide association studies, are those with high genetic diversity, allowing for numerous informative markers, and rare meiotic recombination, allowing for strong linkage disequilibrium (LD) between markers and phenotype-determining loci. However, levels of genetic diversity and LD in field populations of the major human malaria parasite P. vivax remain little characterized.

Results

We examined single-nucleotide polymorphisms (SNPs) and LD patterns across a 100-kb chromosome segment of P. vivax in 238 field isolates from areas of low to moderate malaria endemicity in South America and Asia, where LD tends to be more extensive than in holoendemic populations, and in two monkey-adapted strains (Salvador-I, from El Salvador, and Belem, from Brazil). We found varying levels of SNP diversity and LD across populations, with the highest diversity and strongest LD in the area of lowest malaria transmission. We found several clusters of contiguous markers with rare meiotic recombination and characterized a relatively conserved haplotype structure among populations, suggesting the existence of recombination hotspots in the genome region analyzed. Both silent and nonsynonymous SNPs revealed substantial between-population differentiation, which accounted for ~40% of the overall genetic diversity observed. Although parasites clustered according to their continental origin, we found evidence for substructure within the Brazilian population of P. vivax. We also explored between-population differentiation patterns revealed by loci putatively affected by natural selection and found marked geographic variation in frequencies of nucleotide substitutions at the pvmdr-1 locus, putatively associated with drug resistance.

Conclusion

These findings support the feasibility of genome-wide association studies in carefully selected populations of P. vivax, using relatively low densities of markers, but underscore the risk of false positives caused by population structure at both local and regional levels.See commentary: http://www.biomedcentral.com/1741-7007/8/90
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号