首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  1997年   1篇
  1996年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
The effects of raised temperature and extended photoperiod onthe dehardening of quiescent and winter-hardy Scots pine saplingswere examined in an open-top-chamber experiment. The saplingswere exposed during winter to natural, square-curve fluctuating(between 1 and 11 °C with a 14 d interval), and constant(6 °C) temperatures with a natural and an extended (17 h)photoperiod. Frost hardiness of needles was determined by controlledfreezing tests and visual damage scoring. The constant 6 °Ctemperature treatment caused a gradual dehardening of needleswhereas under fluctuating temperatures the level of frost hardinessfluctuated. Trees exposed to extended photoperiods were lesshardy than under natural photoperiods after the initiation ofshoot elongation, but before this there were no clear differencesin frost hardiness between different photoperiodic treatments.The results indicate that the frost hardening competence ofScots pine changes during quiescence. Climate change; frost hardiness; hardening competence; photoperiod; Pinus sylvestris, Scots pine; temperature  相似文献   
2.
LEINONEN  ILKKA 《Annals of botany》1996,78(6):687-693
The changes in the frost hardiness of Scots pine were modelledby a dynamic model where the input variables were temperatureand photoperiod and the phase of annual development. The damagecaused by freezing was described by the sigmoidal relationshipbetween the relative needle damage and freezing temperature.The model simulations were carried out using temperature datafrom two sites in central Finland—Suonenjoki and Tampere.The validity of the frost hardiness model was tested with measuredfrost hardiness data from Suonenjoki. The effects of climaticwarming were also simulated by increasing temperature of thelong-term climatic data. Genotypic differences in chilling requirement,which determines the timing of the reduction of hardening competence,were included in the simulations. The simulated needle damageincreased as a result of climatic warming, and the differencesin the chilling requirement had a stronger effect on the amountof damage in the warmed climate than in the present climate.A large variation between years was found in the level of damage. Annual development; climatic change; dynamic model; freeze damage; frost hardiness,Pinus sylvestris ; Scots pine  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号