首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   9篇
  2022年   3篇
  2021年   3篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2012年   5篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2006年   4篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  1999年   1篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1991年   5篇
排序方式: 共有55条查询结果,搜索用时 15 毫秒
1.
2.
Chromosomal DNA replication intermediates, revealed in ligase-deficient conditions in vivo, are of low molecular weight (LMW) independently of the organism, suggesting discontinuous replication of both the leading and the lagging DNA strands. Yet, in vitro experiments with purified enzymes replicating sigma-structured substrates show continuous synthesis of the leading DNA strand in complete absence of ligase, supporting the textbook model of semi-discontinuous DNA replication. The discrepancy between the in vivo and in vitro results is rationalized by proposing that various excision repair events nick continuously synthesized leading strands after synthesis, producing the observed LMW intermediates. Here, we show that, in an Escherichia coli ligase-deficient strain with all known excision repair pathways inactivated, new DNA is still synthesized discontinuously. Furthermore, hybridization to strand-specific targets demonstrates that the LMW replication intermediates come from both the lagging and the leading strands. These results support the model of discontinuous leading strand synthesis in E. coli.  相似文献   
3.
Bacterial RecA protein is required for repair of two-strand DNA lesions that disable whole chromosomes. recA mutants are viable, suggesting a considerable cellular capacity to avoid these chromosome-disabling lesions. recA-dependent mutants reveal chromosomal lesion avoidance pathways. Here we characterize one such mutant, rdgB/yggV, deficient in a putative inosine/xanthosine triphosphatase, conserved throughout kingdoms of life. The rdgB recA lethality is suppressed by inactivation of endonuclease V (gpnfi) specific for DNA-hypoxanthines/xanthines, suggesting that RdgB either intercepts improper DNA precursors dITP/dXTP or works downstream of EndoV in excision repair of incorporated hypoxathines/xanthines. We find that DNA isolated from rdgB mutants contains EndoV-recognizable modifications, whereas DNA from nfi mutants does not, substantiating the dITP/dXTP interception by RdgB. rdgB recBC cells are inviable, whereas rdgB recF cells are healthy, suggesting that chromosomes in rdgB mutants suffer double-strand breaks. Chromosomal fragmentation is indeed observed in rdgB recBC mutants and is suppressed in rdgB recBC nfi mutants. Thus, one way to avoid chromosomal lesions is to prevent hypoxanthine/xanthine incorporation into DNA via interception of dITP/dXTP.  相似文献   
4.
Nucleotide pool sanitizing enzymes Dut (dUTPase), RdgB (dITPase), and MutT (8-oxo-dGTPase) of Escherichia coli hydrolyze noncanonical DNA precursors to prevent incorporation of base analogs into DNA. Previous studies reported dramatic AT-->CG mutagenesis in mutT mutants, suggesting a considerable density of 8-oxo-G in DNA that should cause frequent excision and chromosomal fragmentation, irreparable in the absence of RecBCD-catalyzed repair and similar to the lethality of dut recBC and rdgB recBC double mutants. In contrast, we found mutT recBC double mutants viable with no signs of chromosomal fragmentation. Overproduction of the MutM and MutY DNA glycosylases, both acting on DNA containing 8-oxo-G, still yields no lethality in mutT recBC double mutants. Plasmid DNA, extracted from mutT mutM double mutant cells and treated with MutM in vitro, shows no increased relaxation, indicating no additional 8-oxo-G modifications. Our DeltamutT allele elevates the AT-->CG transversion rate 27,000-fold, consistent with published reports. However, the rate of AT-->CG transversions in our mutT(+) progenitor strain is some two orders of magnitude lower than in previous studies, which lowers the absolute rate of mutagenesis in DeltamutT derivatives, translating into less than four 8-oxo-G modifications per genome equivalent, which is too low to cause the expected effects. Introduction of various additional mutations in the DeltamutT strain or treatment with oxidative agents failed to increase the mutagenesis even twofold. We conclude that, in contrast to the previous studies, there is not enough 8-oxo-G in the DNA of mutT mutants to cause elevated excision repair that would trigger chromosomal fragmentation.  相似文献   
5.
Endonuclease V, encoded by the nfi gene, initiates removal of the base analogs hypoxanthine and xanthine from DNA, acting to prevent mutagenesis from purine base deamination within the DNA. On the other hand, the RdgB nucleotide hydrolase in Escherichia coli is proposed to prevent hypoxanthine and xanthine incorporation into DNA by intercepting the noncanonical DNA precursors dITP and dXTP. Because many base analogs are mutagenic when incorporated into DNA, it is intuitive to think of RdgB as acting to prevent similar mutagenesis from deaminated purines in the DNA precursor pools. To test this idea, we used a set of Claire Cupples' strains to detect changes in spontaneous mutagenesis spectra, as well as in nitrous acid-induced mutagenesis spectra, in wild-type cells and in rdgB single, nfi single, and rdgB nfi double mutants. We found neither a significant increase in spontaneous mutagenesis in rdgB and nfi single mutants or the double mutant nor any changes in nitrous acid-induced mutagenesis for rdgB mutant strains. We conclude that incorporation of deaminated purines into DNA is nonmutagenic.  相似文献   
6.
There is growing evidence that spontaneous chromosomal fragmentation, one of the main contributors to genetic instability, is intimately linked to DNA replication. In particular, we proposed before that uracil incorporation in DNA triggers chromosomal fragmentation due to replication fork collapse at uracil-excision intermediates. We tested predictions of this model at the chromosomal level in the dut mutants of Escherichia coli , by determining the relationship between DNA replication and patterns of fragmentation in defined chromosomal segments. Here we show that the uracil-DNA-triggered chromosomal fragmentation: (i) has a gradient that parallels the replication gradient, (ii) shows polarity within defined segments pointing towards replication origins and (iii) reorganizes to match induced replication gradients, confirming its dynamic pattern. Unexpectedly, these fragmentation patterns not only support the replication fork collapse model, but also reveal another mechanism of the replication-dependent chromosomal fragmentation triggered by uracil excision.  相似文献   
7.

Non-photochemical quenching (NPQ) is a mechanism responsible for high light tolerance in photosynthetic organisms. In cyanobacteria, NPQ is realized by the interplay between light-harvesting complexes, phycobilisomes (PBs), a light sensor and effector of NPQ, the photoactive orange carotenoid protein (OCP), and the fluorescence recovery protein (FRP). Here, we introduced a biophysical model, which takes into account the whole spectrum of interactions between PBs, OCP, and FRP and describes the experimental PBs fluorescence kinetics, unraveling interaction rate constants between the components involved and their relative concentrations in the cell. We took benefit from the possibility to reconstruct the photoprotection mechanism and its parts in vitro, where most of the parameters could be varied, to develop the model and then applied it to describe the NPQ kinetics in the Synechocystis sp. PCC 6803 mutant lacking photosystems. Our analyses revealed  that while an excess of the OCP over PBs is required to obtain substantial PBs fluorescence quenching in vitro, in vivo the OCP/PBs ratio is less than unity, due to higher local concentration of PBs, which was estimated as ~10?5 M, compared to in vitro experiments. The analysis of PBs fluorescence recovery on the basis of the generalized model of enzymatic catalysis resulted in determination of the FRP concentration in vivo close to 10% of the OCP concentration. Finally, the possible role of the FRP oligomeric state alteration in the kinetics of PBs fluorescence was shown. This paper provides the most comprehensive model of the OCP-induced PBs fluorescence quenching to date and the results are important for better understanding of the regulatory molecular mechanisms underlying NPQ in cyanobacteria.

  相似文献   
8.
High light poses a threat to oxygenic photosynthetic organisms. Similar to eukaryotes, cyanobacteria evolved a photoprotective mechanism, non-photochemical quenching (NPQ), which dissipates excess absorbed energy as heat. An orange carotenoid protein (OCP) has been implicated as a blue-green light sensor that induces NPQ in cyanobacteria. Discovered in vitro, this process involves a light-induced transformation of the OCP from its dark, orange form (OCP(o)) to a red, active form, however, the mechanisms of NPQ in vivo remain largely unknown. Here we show that the formation of the quenching state in vivo is a multistep process that involves both photoinduced and dark reactions. Our kinetic analysis of the NPQ process reveals that the light induced conversion of OCP(o) to a quenching state (OCP(q)) proceeds via an intermediate, non-quenching state (OCP(i)), and this reaction sequence can be described by a three-state kinetic model. The conversion of OCP(o) to OCP(i) is a photoinduced process with the effective absorption cross section of 4.5 × 10(-3)?2 at 470 nm. The transition from OCP(i) to OCP(q) is a dark reaction, with the first order rate constant of approximately 0.1s(-1) at 25°C and the activation energy of 21 kcal/mol. These characteristics suggest that the reaction rate may be limited by cis-trans proline isomerization of Gln224-Pro225 or Pro225-Pro226, located at a loop near the carotenoid. NPQ decreases the functional absorption cross-section of Photosystem II, suggesting that formation of the quenched centers reduces the flux of absorbed energy from phycobilisomes to the reaction centers by approximately 50%.  相似文献   
9.
Blue light induced quenching in a Synechocystis sp. PCC 6803 strain lacking both photosystems is only related to allophycocyanin fluorescence. A fivefold decrease in the fluorescence level in two bands near 660 and 680 nm is attributed to different allophycocyanin forms in the phycobilisome core. Some low-heat sensitive component inactivated at 53 °C is involved in the quenching process. Enormous allophycocyanin fluorescence in the absence of the photosystems reveals a dark stage in this quenching. Thus, we present evidence that light activation of the carotenoid-binding protein and formation of a quenching center within the phycobilisome core in vivo are discrete events in a multistep process.  相似文献   
10.
Bacterial DNA ligases, NAD+‐dependent enzymes, are distinct from eukaryotic ATP‐dependent ligases, representing promising targets for broad‐spectrum antimicrobials. Yet, the chromosomal consequences of ligase‐deficient DNA replication, during which Okazaki fragments accumulate, are still unclear. Using ligA251(Ts), the strongest ligase mutant of Escherichia coli, we studied ligase‐deficient DNA replication by genetic and physical approaches. Here we show that replication without ligase kills after a short resistance period. We found that double‐strand break repair via RecA, RecBCD, RuvABC and RecG explains the transient resistance, whereas irreparable chromosomal fragmentation explains subsequent cell death. Remarkably, death is mostly prevented by elimination of linear DNA degradation activity of ExoV, suggesting that non‐allelic double‐strand breaks behind replication forks precipitate DNA degradation that enlarge them into allelic double‐strand gaps. Marker frequency profiling of synchronized replication reveals stalling of ligase‐deficient forks with subsequent degradation of the DNA synthesized without ligase. The mechanism that converts unsealed nicks behind replication forks first into repairable double‐strand breaks and then into irreparable double‐strand gaps may be behind lethality of any DNA damaging treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号