首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   0篇
  45篇
  2022年   3篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   1篇
  2012年   3篇
  2011年   1篇
  2010年   3篇
  2008年   1篇
  2007年   2篇
  2005年   2篇
  2002年   2篇
  2001年   4篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1992年   1篇
  1990年   1篇
  1988年   3篇
  1974年   1篇
排序方式: 共有45条查询结果,搜索用时 8 毫秒
1.
We study orientational ordering of membrane compounds in the myelinated nerve fiber by means of polarized Raman microspectroscopy. The theory of orientational distribution functions was adapted to live-cell measurements. The obtained orientational distribution functions of carotenoids and lipid acyl chain clearly indicated a predominantly radial-like orientation in membranes of the myelin. Two-dimensional Raman images, made under optimal polarization of incident laser beam, corroborated the proposed carotenoid orientation within the bilayer. Experimental data suggested the tilted orientation of both carotenoid polyenic and lipid acyl chains. The values of maximum tilt angles were similar, with possible implication of carotenoid-induced ordering effect on lipid acyl chains, and hence change of myelin membrane properties. This study stages carotenoids of the nerve as possible mediators of excitation and leverages underlying activity-dependent membrane reordering.  相似文献   
2.
Molecular mechanisms of surfactant delivery to the air/liquid interface in the lung, which is crucial to lower the surface tension, have been studied for more than two decades. Lung surfactant is synthesized in the alveolar type II cells. Its delivery to the cell surface is preceded by surfactant component synthesis, packaging into specialized organelles termed lamellar bodies, delivery to the apical plasma membrane and fusion. Secreted surfactant undergoes reuptake, intracellular processing, and finally resecretion of recycled material. This review focuses on the mechanisms of delivery of surfactant components to and their secretion from lamellar bodies. Lamellar bodies-independent secretion is also considered. Signal transduction pathways involved in regulation of these processes are discussed as well as disorders associated with their malfunction.  相似文献   
3.
Biochemistry (Moscow) - Reaction of (ADP-ribosyl)ation catalyzed by DNA-dependent proteins of the poly(ADP-ribose)polymerase (PARP) family, PARP1, PARP2, and PARP3, comprises the cellular response...  相似文献   
4.
Considerable physiological and biochemical evidence suggests that plants, like animals, widely use intracellular signalling coupled to heterotrimeric G proteins. Yet, the molecular components of this machinery remained elusive until recently. We overview the work carried out during the last two decades, aimed at identification of the plant proteins involved in G protein-coupled signalling. The completion of the sequencing of the Arabidopsis genome now permits to assess whether plants possess signalling and regulatory components of this machinery corresponding to those known from animals.  相似文献   
5.
In the present paper we addressed a mechanism of the myelin reorganization initiated by extracellular ATP and adenosine in sciatic nerves of the frog Rana temporaria. In combination with Raman microspectroscopy, allowing noninvasive live-cell measurements, we employed time-of-flight secondary ion mass spectrometry (TOF-SIMS) to follow the underlying changes in chemical composition of myelin membranes triggered by the purinergic agents. The simultaneous increase in lipid ordering degree, decrease in membrane fluidity and the degree of fatty acid unsaturation were induced by both ATP and adenosine. Mass spectrometry measurements revealed that ATP administration also led to the marked elevation of membrane cholesterol and decrease of phosphotidylcholine amounts. Vesicular lipid transport pathways are considered as possible mechanisms of compositional and structural changes of myelin.  相似文献   
6.
7.
A great variety of cellular functions are regulated by protein serine/threonine phosphatases (PP). This review summarises the current knowledge of the structural features, patterns of expression and involvement in signal transduction pathways of protein serine/threonine phosphatases related to PP5 and RdgC. Designated now as PP5/RdgC subfamily by P. T. W. Cohen in her 1997 study published in Trends in Biochemical Sciences, (Vol. 22, pp. 245-251), this heterogeneous group comprises phosphatases PP5/PPT, containing regulatory domains with tetratricopeptide repeats, RdgC/PPEF, which possess Ca2+-binding EF hand-type sites, and, recently discovered in plants, PP7. PP5 is ubiquitously expressed and appears to be a multifunctional phosphatase involved in a number of different signalling pathways. In contrast, expression of RdgC/PPEF phosphatases and PP7 is confined primarily to specialised sensory cells in animals and plants, respectively, which may be indicative of their more specialised roles in sensory signal transduction.  相似文献   
8.
The function of protein phosphatases with EF-hand domains (PPEF) in mammals is not known. Large-scale expression profiling experiments suggest that PPEF expression may correlate with stress protective responses, cell survival, growth, proliferation, or neoplastic transformation. Apoptosis signal regulating kinase-1 (ASK1) is a MAP kinase kinase kinase implicated in cancer, cardiovascular and neurodegenerative diseases. ASK1 is activated by oxidative stress and induces pro-apoptotic or inflammatory signalling, largely via sustained activation of MAP kinases p38 and/or JNK. We identify human PPEF2 as a novel interacting partner and a negative regulator of ASK1. In COS-7 or HEK 293A cells treated with H2O2, expression of PPEF2 abrogated sustained activation of p38 and one of the JNK p46 isoforms, and prevented ASK1-dependent caspase-3 cleavage and activation. PPEF2 efficiently suppressed H2O2-induced activation of ASK1. Overexpessed as well as endogenous ASK1 co-immunoprecipitated with PPEF2. PPEF2 was considerably more potent both as a suppressor of ASK1 activation and as its interacting partner as compared to protein phosphatase 5 (PP5), a well-known negative regulator of ASK1. PPEF2 was found to form complexes with endogenous Hsp70 and to a lesser extent Hsp90, which are also known interacting partners of PP5. These data identify, for the first time, a possible downstream signalling partner of a mammalian PPEF phosphatase, and suggest that, despite structural divergence, PPEF and PP5 phosphatases may share common interacting partners and functions.  相似文献   
9.
To study the interaction of poly(ADP-ribose) polymerase 1 (PARP1) with apurinic/apyrimidinic sites (AP sites) within clustered damages, DNA duplexes were created that contained an AP site in one strand and one of its analogs situated opposite the AP site in the complementary strand. Residues of 3-hydroxy-2-hydroxymethyltetrahydrofuran (THF), diethylene glycol (DEG), and decane-1,10-diol (DD) were used. It is shown for the first time that apurinic/apyrimidinic endonuclease 1 (APE1) cleaves the DNA strands at the positions of DEG and DD residues, and this suggests these groups as AP site analogs. Insertion of DEG and DD residues opposite an AP site decreased the rate of AP site hydrolysis by APE1 similarly to the effect of the THF residue, which is a well-known analog of the AP site, and this allowed us to use such AP DNAs to imitate DNA with particular types of clustered damages. PARP1, isolated and in cell extracts, efficiently interacted with AP DNA with analogs of AP sites producing a Schiff base. PARP1 competes with APE1 upon interaction with AP DNAs, decreasing the level of its cross-linking with AP DNA, and inhibits hydrolysis of AP sites within AP DNAs containing DEG and THF residues. Using glutaraldehyde as a linking agent, APE1 is shown to considerably decrease the amount of AP DNA-bound PARP1 dimer, which is the catalytically active form of this enzyme. Autopoly(ADP-ribosyl)ation of PARP1 decreased its inhibitory effect. The possible involvement of PARP1 and its automodification in the regulation of AP site processing within particular clustered damages is discussed.  相似文献   
10.
Rhodopsin kinase (GRK1) is a member of G protein-coupled receptor kinase family and a key enzyme in the quenching of photolysed rhodopsin activity and desensitisation of the rod photoreceptor neurons. Like some other rod proteins involved in phototransduction, GRK1 is posttranslationally modified at the C terminus by isoprenylation (farnesylation), endoproteolysis and α-carboxymethylation. In this study, we examined the potential mechanisms of regulation of GRK1 methylation status, which have remained unexplored so far. We found that considerable fraction of GRK1 is endogenously methylated. In isolated rod outer segments, its methylation is inhibited and demethylation stimulated by low-affinity nucleotide binding. This effect is not specific for ATP and was observed in the presence of a non-hydrolysable ATP analogue AMP-PNP, GTP and other nucleotides, and thus may involve a site distinct from the active site of the kinase. GRK1 demethylation is inhibited in the presence of Ca(2+) by recoverin. This inhibition requires recoverin myristoylation and the presence of the membranes, and may be due to changes in GRK1 availability for processing enzymes upon its redistribution to the membranes induced by recoverin/Ca(2+). We hypothesise that increased GRK1 methylation in dark-adapted rods due to elevated cytoplasmic Ca(2+) levels would further increase its association with the membranes and recoverin, providing a positive feedback to efficiently suppress spurious phosphorylation of non-activated rhodopsin molecules and thus maximise senstivity of the photoreceptor. This study provides the first evidence for dynamic regulation of GRK1 α-carboxymethylation, which might play a role in the regulation of light sensitivity and adaptation in the rod photoreceptors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号