首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2008年   1篇
  1984年   1篇
  1978年   1篇
排序方式: 共有10条查询结果,搜索用时 265 毫秒
1
1.
The fine structure of the regular arrays of subunits seen on both plasmalemma fracture faces in resting and starved Saccharomyces cerevisiae (baker's yeast) has been compared using different freeze-fracture replication methods. Freeze-cleaving was carried out at 173 degrees, 133 degrees, and 108 degrees K under a vacuum of 2 X 10(-7) torr (2.6 X 10(- 7)mbar) or under liquid nitrogen at atmosphereic pressure. Independent of the preparation conditions (fracturing temperature, and whether cleaved under vacuum or liquid nitrogen), resting and starved yeast show a significant difference in the morphology of the subunits forming the regular arrays. The regularly arranged particles of the P face of the plasmalemma of starved yeast have a clear craterlike structure which has previously been reported to be demonstrated only by freeze-etching at very low temperatures in ultrahigh vacuum. A complementary structure is seen on the plasmalemma E face. Prolonged exposures of fracture faces under the protection of liquid nitrogen-cooled shrouds have shown that, because of the consequent drastic reduction of condensable gases in the specimen area, no detectable condensation contamination of exposed fracture faces occurs within 15 min at a specimen temperature of 108 degrees K. This shows that a complicated ultrahigh vacuum technology is not required for high resolution freeze- etching.  相似文献   
2.

Aims

Heat stress is a growing concern in crop production because of global warming. In many cropping systems heat stress often occurs simultaneously with other environmental stress factors such as mineral nutrient deficiencies. This study aimed to investigate the role of adequate magnesium (Mg) nutrition in mitigating the detrimental effects of heat stress on wheat (Triticum aestivum) and maize (Zea mays).

Methods

Wheat and maize plants were grown in solution culture with low or adequate Mg supply at 25/22 °C (light/dark). Half of the plants were, then, exposed to heat stress at 35/28 °C (light/dark). Development of leaf chlorosis and changes in root and shoot growth, chlorophyll and Mg concentrations as well as the activities of major antioxidative enzymes were quantified in the experimental plants. Additionally, maize plants were analyzed for the specific weights (e.g., dry or fresh weight per a given leaf surface area) and soluble carbohydrate concentrations of sink and source leaves.

Results

Visual leaf symptoms of Mg deficiency were aggravated in wheat and maize when exposed to heat stress. In both species, root growth was more sensitive to Mg deficiency than shoot growth, and the shoot-to-root ratios peaked when heat stress was combined with Mg deficiency. Magnesium deficiency markedly reduced soluble carbohydrate concentrations in young leaf; but resulted in substantial increase in source leaves. Magnesium deficiency also increased activities of antioxidative enzymes, especially when combined with heat stress. The highest activities of superoxide dismutase (up to 80 % above the control), glutathione reductase (up to 250 % above the control) and ascorbate peroxidase (up to 300 % above the control) were measured when Mg-deficient plants were subjected to heat, indicating stimulated formation of reactive oxygen species (ROS) in Mg deficient leaves under heat stress.

Conclusions

Magnesium deficiency increases susceptibility of wheat and maize plants to heat stress, probably by increasing oxidative cellular damage caused by ROS. Ensuring a sufficiently high Mg supply for crop plants through Mg fertilization is a critical factor for minimizing heat-related losses in crop production.  相似文献   
3.
This study focussed on the effect of increasing nitrogen (N) supply on root uptake and root-to-shoot translocation of zinc (Zn) as well as retranslocation of foliar-applied Zn in durum wheat (Triticum durum). Nutrient solution experiments were conducted to examine the root uptake and root-to-shoot translocation of (65) Zn in seedlings precultured with different N supplies. In additional experiments, the effect of varied N nutrition on retranslocation of foliar-applied (65) Zn was tested at both the vegetative and generative stages. When N supply was increased, the (65) Zn uptake by roots was enhanced by up to threefold and the (65) Zn translocation from roots to shoots increased by up to eightfold, while plant growth was affected to a much smaller degree. Retranslocation of (65) Zn from old into young leaves and from flag leaves to grains also showed marked positive responses to increasing N supply. The results demonstrate that the N-nutritional status of wheat affects major steps in the route of Zn from the growth medium to the grain, including its uptake, xylem transport and remobilization via phloem. Thus, N is a critical player in the uptake and accumulation of Zn in plants, which deserves special attention in biofortification of food crops with Zn.  相似文献   
4.

Background and aims

Nickel (Ni) has a critical role in the urea metabolism of plants. This study investigated the impact of seed Ni content along with external Ni supply on the growth, various nitrogen (N) metabolites and N use efficiency (NUE) of soybean plants.

Methods

Soybean plants raised from Ni-poor or Ni-rich seeds were grown in nutrient solution with or without external Ni supply and fed with either urea or nitrate as the sole N source. The changes in growth, leaf chlorophyll levels, Ni and N concentrations of different plant parts, tissue accumulation of various N metabolites and N uptake of soybean as well as NUE and its components were examined.

Results

Nickel starvation reduced the shoot biomass of urea-fed plants by 25 % and the leaf chlorophyll levels by up to 35 %, but nitrate-fed plants were unaffected. Visual toxicity symptoms were not observed in urea-fed plants. Under urea supply, Ni-deficient plants had lower levels of total N, protein and free amino acids in various organs. Root uptake of urea was severely depressed in Ni-deprived plants. Availability of Ni did not have any effect on the NUE of nitrate-fed plants, whereas its deficiency reduced the NUE of urea-fed plants by 30 %. The growth and N nutritional status of urea-fed soybean were significantly improved by high seed Ni reserves as well as external Ni supply.

Conclusion

Adequate Ni supply is required for maximizing the growth, root uptake of urea and NUE of urea-fed plants. Seed Ni reserves contribute significantly to the Ni and thus N nutritional status of soybean.  相似文献   
5.

Background and aims

Whether root Zn uptake during grain filling or remobilization from pre-anthesis Zn stores contributes more to grain Zn in wheat is subject to an on-going debate. This study investigated the effects of N nutrition and post-anthesis Zn availability on the relative importance of these sources.

Methods

Durum wheat plants were grown in nutrient solution containing adequate Zn (0.5?μM) and three different N levels (0.5; 1.5; 4.5?mM). One third of the plants were harvested when they reached anthesis. One half of the remaining plants were grown to maturity with adequate Zn, whereas the Zn supply to the other half was discontinued at anthesis. Roots, straw and grains were harvested separately and analyzed for Zn and N.

Results

Depending on the N supply, Zn remobilization from pre-anthesis sources provided almost all of grain Zn when the Zn supply was withheld at anthesis; otherwise up to 100?% of grain Zn could be accounted for by Zn taken up post-anthesis. By promoting tillering and grain yield and extending the grain filling, higher N supply favored the contribution of Zn uptake to grain Zn accumulation.

Conclusion

Remobilization is critical for grain Zn accumulation when Zn availability is restricted during grain filling. However, where root uptake can continue, concurrent Zn uptake during grain development, favored by higher N supply, overshadows net remobilization.  相似文献   
6.
Deficiencies of zinc (Zn) and iron (Fe) are global nutritional problems and caused most often by their limited dietary intake. Increasing Zn and Fe concentrations of staple food crops such as wheat is therefore an important global challenge. This study investigated the effects of varied nitrogen (N) and Zn supply on the total uptake, remobilization and partitioning of Zn, Fe and N in durum wheat throughout its ontogenesis. Plants were grown under greenhouse conditions with high or low supply of N and Zn, and harvested at 8 different developmental stages for analysis of Zn, Fe and N in leaves, stems, husks and grains. The results obtained showed that the Zn and Fe uptake per plant was enhanced up to 4-fold by high N supply while the increases in plant growth by high N supply were much less. When both the Zn and N supplies were high, approximately 50% of grain Zn and 80% of grain Fe were provided by post-anthesis shoot uptake, indicating that the contribution of remobilization to grain accumulation was higher for Zn than for Fe. At the high N and Zn application, about 60% of Zn, but only 40% of Fe initially stored in vegetative parts were retranslocated to grains, and nearly 80% of total shoot Zn and 60% of total shoot Fe were harvested with grains. All these values were significantly lower at the low N treatment. Results indicate that N nutrition is a critical factor in both the acquisition and grain allocation of Zn and Fe in wheat.  相似文献   
7.

Background and aims

The importance of seed Ni reserves for plant growth and N metabolism is poorly understood. This study investigated the effects of both seed Ni and externally supplied Ni on the impact of foliarly-applied urea and N-nutritional status of soybean.

Methods

Soybean seeds were produced by growing plants in nutrient solutions containing different Ni levels, and their urease activities were measured. Plants were then grown from these seeds with or without external Ni. After treating half of the plants with foliar urea, the urea damage symptoms, elongation rates and chlorophyll concentrations were followed over one week. Biomass and mineral concentrations of different plant parts were determined.

Results

Nickel supply at increasing rates improved seed yield by up to 25 %. Seeds with Ni concentrations varying between 0.04–8.32 mg.kg?1 were obtained. Depending on the Ni concentration, the seed urease activities differed up to 100-fold. Leaf damage due to foliar urea spray was significantly alleviated by higher seed Ni as well as external Ni supply. Higher Ni also promoted shoot elongation and improved chlorophyll concentrations. Nickel was 10-times more concentrated in the youngest part than in older leaves. In the absence of foliar urea, Ni enhanced the N concentration of the growing part of the shoot by up to 30 %.

Conclusion

A better utilization of foliarly-applied urea-N is achieved in soybean when adequate Ni is supplied to plants by seed reserves and/or externally. High seed Ni levels are also required for preventing foliar urea damage and improving N remobilization.  相似文献   
8.

Aims

Zinc deficiency is a common micronutrient deficiency in plants growing in many different regions of the world and is associated with disturbances in uptake and accumulation of mineral nutrients. Despite many published data on physiological factors affecting ion accumulation in Zn deficient plants, there is very little information about the genetic factors underlying this. We aim to identify genetic loci involved in mineral accumulation and plant performance under Zn deficiency.

Methods

Genetic loci were identified using the genetically segregating Ler × Cvi recombinant inbred line (RIL) population grown under Zn deficient conditions. Lines were analysed for the concentrations of Zn, Fe, Mn, K, Ca, Mg, P, Cu, S and Al in shoot dry matter. The same was done for the same lines grown under Zn sufficient conditions.

Results

We found considerable heritable variation for most mineral concentrations. In general, there was a positive correlation between mineral concentrations. For Zn only condition-dependent QTLs were identified, while for most other mineral concentrations both condition-dependent and -independent QTLs were identified. Several QTLs co-localize, including co-localization to loci controlling shoot biomass and to mineral concentration loci found previously in this and other RIL populations.

Conclusions

There are different genetic loci controlling Zn accumulation under deficient and sufficient Zn supply. Only for few minerals, their accumulation is controlled by Zn-supply-specific loci.  相似文献   
9.
This paper demonstrates the application of a design tool called BioTRIZ. Its developers claim that it can be used to access biological strategies for solving engineering problems. Our aim is to design a roof for hot climates that gets free cooling through radiant coupling with the sky. The insulation in a standard roof stops the sun and convection from warming the thermal mass. But it also restricts the mass's longwave view of the cool sky. Different solutions to this conflict are offered by BioTRIZ. The chosen solution is to replace the standard insulation component with an open cell honeycomb. The vertical cells would allow longwave radiation to pass, while arresting convection. The solutions offered by BioTRIZ's technological counterpart include no such changes in structure. It is estimated that the thermal mass in the biomimetic roof would remain on average 4.5℃ cooler than in a standard roof over a year in Riyadh, Saudi Arabia.  相似文献   
10.
A study was made of the sedimentation properties of Ehrlich ascites tumor cell nucleotide obtained by cell lysis in 1.95 M NaCl, 0.1 M EDTA, 0.02 M tris, and 0.5% triton X-100, at pH 5.0 and 8.0. It was shown that the nucleotide obtained at pH 5.0 has a more compact structure than that obtained at pH 8.0. Irradiation of cells leads to relaxation of the nucleotide decreasing the rate of its sedimentation in a neutral sucrose gradient. The influence of irradiation on the sedimentation properties is more pronounced with pH 5.0 than 8.0.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号