首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   2篇
  2016年   1篇
  2010年   1篇
  2006年   1篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  2000年   2篇
  1990年   1篇
  1985年   1篇
  1984年   3篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
1.
The formation of acetylcholine receptor (AChR) clusters at the neuromuscular junction was investigated by observing the sequential changes in AChR cluster distribution on cultured Xenopus muscle cells. AChRs were labeled with tetramethylrhodamine-conjugated alpha-bungarotoxin (TMR-alpha BT). Before innervation AChRs were distributed over the entire surface of muscle cells with occasional spots of high density (hot spots). When the nerve contacted the muscle cell, the large existing hot spots disappeared and small AChR clusters (less than 1 micron in diameter) initially emerged from the background along the area of nerve contact. They grew in size, increased in number, and fused to form larger clusters over a period of 1 or 2 days. Receptor clusters did not migrate as a whole as observed during "cap" formation in B lymphocytes. The rate of recruitment of AChRs at the nerve-muscle junction varied from less than 50 binding sites to 1000 sites/hr for alpha BT. In this study the diffusion-trap mechanism was tested for the nerve-induced receptor accumulation. The diffusion coefficient of diffusely distributed AChRs was measured using the fluorescence photobleaching recovery method and found to be 2.45 X 10(-10) cm2/sec at 22 degrees C. There was no significant difference in these values among the muscle cells cultured without nerve, the non-nerve-contacted muscle cells in nerve-muscle cultures, and the nerve-contacted muscle cells. It was found that the diffusion of receptors in the membrane is not rate-limiting for AChR accumulation.  相似文献   
2.
The effect of denervation on acetylcholine receptor (AChR) cluster distribution on cultured Xenopus muscle cells has been examined in order to study the role of intact nerve in the maintenance of clusters at the nerve-muscle junction during development. AChRs on the muscle cell were labeled with tetramethyl rhodamine-conjugated alpha-bungarotoxin and sequential changes in AChR cluster distribution were examined with a fluorescence microscope using an image intensifier. Denervation was carried out by exposing the nerve cell body to a focused laser light of a high intensity. After this procedure the neurites originating from the cell quickly disintegrated and large AChR clusters associated with nerve divided into smaller clusters. Individual clusters subsequently decreased in size and finally disappeared. In about 30% of the cases new AChR clusters appeared at the extrajunctional region after denervation. These observations indicate that intact nerves are necessary for the maintenance of receptor localization at the nerve-muscle junction and that nerve-induced accumulation is seemingly reversible during the early period of synapse formation. We tested the idea that receptor clusters were lost due to diffusion of receptors in the muscle membrane after denervation. However, the rate of receptor cluster dispersal after denervation was much slower than that predicted by the diffusion model, suggesting that diffusion of receptors is not a rate-limiting step. Furthermore, we found that receptor clusters at the junction stabilize during days in culture. Thus, 80-90% of receptor clusters at the nerve-muscle junction disappeared at 7 hr after denervation in 1-day cocultures, while about 50% of receptor clusters remained after denervation in 3-day cocultures.  相似文献   
3.
Cargo transport by microtubule‐based motors is essential for cell organisation and function. The Bicaudal‐D (BicD) protein participates in the transport of a subset of cargoes by the minus‐end‐directed motor dynein, although the full extent of its functions is unclear. In this study, we report that in Drosophila zygotic BicD function is only obligatory in the nervous system. Clathrin heavy chain (Chc), a major constituent of coated pits and vesicles, is the most abundant protein co‐precipitated with BicD from head extracts. BicD binds Chc directly and interacts genetically with components of the pathway for clathrin‐mediated membrane trafficking. Directed transport and subcellular localisation of Chc is strongly perturbed in BicD mutant presynaptic boutons. Functional assays show that BicD and dynein are essential for the maintenance of normal levels of neurotransmission specifically during high‐frequency electrical stimulation and that this is associated with a reduced rate of recycling of internalised synaptic membrane. Our results implicate BicD as a new player in clathrin‐associated trafficking processes and show a novel requirement for microtubule‐based motor transport in the synaptic vesicle cycle.  相似文献   
4.
Kuromi H  Kidokoro Y 《Neuron》2000,27(1):133-143
At Drosophila neuromuscular junctions, there are two synaptic vesicle pools, namely the exo/endo cycling pool (ECP) and the reserve pool (RP). We studied the recruitment process from RP using a fluorescent dye, FMI-43. During high-frequency nerve stimulation, vesicles in RP were recruited for release, and endocytosed vesicles were incorporated into both pools, whereas with low-frequency stimulation, vesicles were incorporated into and released from ECP. Release of vesicles from RP was detected electrophysiologically after emptying vesicles in the ECP of transmitter by a H+ pump inhibitor. Recruitment from RP was depressed by inhibitors of steps in the cAMP/PKA cascade and enhanced by their activators. In rutabaga (rut) with low cAMP levels, mobilization of vesicles from RP during tetanic stimulation was depressed, while it was enhanced in dunce (dnc) with high cAMP levels.  相似文献   
5.
Individual contributions made by different calcium release and sequestration mechanisms to various aspects of excitable cell physiology are incompletely understood. SERCA, a sarco-endoplasmic reticulum calcium ATPase, being the main agent for calcium uptake into the ER, plays a central role in this process. By isolation and extensive characterization of conditional mutations in the Drosophila SERCA gene, we describe novel roles of this key protein in neuromuscular physiology and enable a genetic analysis of SERCA function. At motor nerve terminals, SERCA inhibition retards calcium sequestration and reduces the amplitude of evoked excitatory junctional currents. This suggests a direct contribution of store-derived calcium in determining the quantal content of evoked release. Conditional paralysis of SERCA mutants is also marked by prolonged neural activity-driven muscle contraction, thus reflecting the phylogenetically conserved role of SERCA in terminating contraction. Further analysis of ionic currents from mutants uncovers SERCA-dependent mechanisms regulating voltage-gated calcium channels and calcium-activated potassium channels that together control muscle excitability. Finally, our identification of dominant loss-of-function mutations in SERCA indicates novel intra- and intermolecular interactions for SERCA in vivo, overlooked by current structural models.  相似文献   
6.
The sizes and contents of transmitter-filled vesicles have been shown to vary depending on experimental manipulations resulting in altered quantal sizes. However, whether such a presynaptic regulation of quantal size can be induced under physiological conditions as a potential alternative mechanism to alter the strength of synaptic transmission is unknown. Here we show that presynaptic vesicles of glutamatergic synapses of Drosophila neuromuscular junctions increase in size as a result of high natural crawling activities of larvae, leading to larger quantal sizes and enhanced evoked synaptic transmission. We further show that these larger vesicles are formed during a period of enhanced replenishment of the reserve pool of vesicles, from which they are recruited via a PKA- and actin-dependent mechanism. Our results demonstrate that natural behavior can induce the formation, recruitment, and release of larger vesicles in an experience-dependent manner and hence provide evidence for an additional mechanism of synaptic potentiation.  相似文献   
7.
8.
9.
10.
Diatom assemblages of sediments obtained from Kushu Lake and Akkeshi were analyzed in order to clarify the local Holocene sedimentary history. The results revealed the following: 1) Sometime before about 9000 yr B.P., Kushu Lake was originally a freshwater environment. 2) The first marine diatom zone (MD1 Zone) was deposited on the bottom of the paleo-Kushu Bay between 8500 and 6000 yr B.P. 3) This site changed to become the bottom of the paleo-Kushu Lagoon around 6000 yr B.P. owing to the formation of a bay-mouth bar across the paleo-Kushu Bay and the first Holocene regression resulted in a freshwater lake at about 4500 yr B.P. 4) At this time, the Akkeshi site changed from a sublittoral shore in a drowned valley to a peat moor. 5) The second Holocene transgression at about 3000 yr B.P. was detected at the Akkeshi site. 6) At Kushu Lake site the occurrence ofMastogloia elliptica between 7000 and 5000 yr B.P. suggested the influx of the Tsushima warm current into the Japan Sea.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号