首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  2020年   1篇
  2018年   1篇
  2013年   1篇
  2012年   1篇
  2011年   3篇
  2008年   1篇
  2003年   1篇
  2001年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
The toxic textile dye, Disperse Brown 118, was degraded by Brevibacillus laterosporus. 96 % decolorization was achieved within 48 h at pH 7, 40 °C at 50 mg dye l?1 accompanied by significant increases in the activities of veratryl alcohol oxidase, tyrosinase and NADH-DCIP reductase. HPTLC and FT-IR spectroscopy confirmed biodegradation after dye decolorization. As identified by GC–MS, biodegradation products of Disperse Brown 118 were N-carbamoyl-2-[(8-chloroquinazolin-4-yl)oxy] acetamide and N-carbamoyl-2-(quinazolin-4-yloxy)acetamide which were much less toxic than parent dye as evidenced by phytotoxicity tests.  相似文献   
2.
Wild and tissue cultured plants of Portulaca grandiflora Hook. have shown to be able to decolorize a sulfonated diazo dye Navy Blue HE2R (NBHE2R) up to 98% in 40 h. A significant induction in the activities of lignin peroxidase, tyrosinase and DCIP reductase was observed in the roots during dye decolorization. The wild plants and tissue cultures could independently decolorize and degrade NBHE2R into metabolites viz. N-benzylacetamide and 6-diazenyl-4-hydroxynaphthalene-2-sulfonic acid. A dye mixture and a textile effluent were also decolorized efficiently by P. grandiflora. The phytotoxicity study revealed reduction in the toxicity due to metabolites formed after dye degradation.  相似文献   
3.
Eupatorium adenophorum leaves cause hepatotoxicity and cholestasis in rats. The hepatotoxicant has been characterized as 9-oxo-10,11-dehydroageraphorone (ODA), a cadinene sesquiterpene. Oral administration of ODA, mixed in feed to rats, caused jaundice in 24 h. The liver of the intoxicated animals had focal areas of hepatocellular necrosis, proliferation, and dilation of bile ducts with degenerative changes in the lining epithelium. There was marked increase in the conjugated form of plasma bilirubin and in the activities of the enzymes glutamate oxaloacetate transaminase, glutamate pyruvate transaminase, alkaline phosphatase, lactate dehydrogenase, gamma-glutamyltranspeptidase, glutamate dehydrogenase, and 5'-nucleotidase. The histopathological lesions in liver and biochemical profile of marker enzymes show that ODA induced hepatotoxicity and cholestasis in rats. This is the first report on the toxicity of a cadinene sesquiterpene in rats.  相似文献   
4.
Metagenomics- the application of the genomics technologies to nonculturable microbial communities, is coming of age. These approaches can be used for the screening and selection of nonculturable rumen microbiota for assessing their role in gastrointestinal (GI) nutrition, plant material fermentation and the health of the host. The technologies designed to access this wealth of genetic information through environmental nucleic acid extraction have provided a means of overcoming the limitations of culture-dependent microbial genetic exploitation. The molecular procedures and techniques will result in reliable insights into the GI microbial structure and activity of the livestock gut microbes in relation to functional interactions, temporal and spatial relationships among different microbial consortia and dietary ingredients. Future developments and applications of these methods promise to provide the first opportunity to link distribution and identity of rumen microbes in their natural habitats with their genetic potential and in situ activities.  相似文献   
5.
6.
This study is a part of efforts to develop new batch method with the help of prepared consortium GG-BL using two microbial cultures viz. Galactomyces geotrichum MTCC 1360 and Brevibacillus laterosporus NCIM 2298, varying oxidation conditions for the bio-treatment processes to produce reusable water by decolorization of Golden Yellow HER (GYHER) to less toxic metabolites. Consortium was found to be much faster for decolorization and degradation of GYHER as compared to the individual strains. The intensive metabolic activity of these strains led to 100% decolorization of GYHER (50 mg l−1) within 24 h with significant reduction in chemical oxygen demand (84%) and total organic carbon (63%). The presence of veratryl alcohol oxidase, NADH-DCIP reductase and induction in laccase, tyrosinase, azo reductase and riboflavin reductase during decolorization suggests their role in decolorization process. Substrate staining of nondenaturing polyacrylamide electrophoresis gel (PAGE) also confirms induction of oxidative enzymes during GYHER degradation. The degradation of the GYHER into different metabolites by individual organism and in consortium was confirmed using High Performance Thin Layer Chromatography (HPTLC), High Performance Liquid Chromatography (HPLC), Fourier Transform Infra Red Spectroscopy (FTIR), Gas Chromatography Mass Spectroscopy (GC–MS) analysis. Phytotoxicity studies revealed nontoxic nature of the metabolites of GYHER.  相似文献   
7.

Animal models of asthma have shown that limonene, a naturally occurring terpene in citrus fruits, can reduce inflammation and airway reactivity. However, the mechanism of these effects is unknown. We first performed computational and molecular docking analyses that showed limonene could bind to both A2A and A2B receptors. The pharmacological studies were carried out with A2A adenosine receptor knock-out (A2AKO) and wild-type (WT) mice using ovalbumin (OVA) to generate the asthma phenotype. We investigated the effects of limonene on lung inflammation and airway responsiveness to methacholine (MCh) and NECA (nonselective adenosine analog) by administering limonene as an inhalation prior to OVA aerosol challenges in one group of allergic mice for both WT and KO. In whole-body plethysmography studies, we observed that airway responsiveness to MCh in WT SEN group was significantly lowered upon limonene treatment but no effect was observed in A2AKO. Limonene also attenuated NECA-induced airway responsiveness in WT allergic mice with no effect being observed in A2AKO groups. Differential BAL analysis showed that limonene reduced levels of eosinophils in allergic WT mice but not in A2AKO. However, limonene reduced neutrophils in sensitized A2AKO mice, suggesting that it may activate A2B receptors as well. These data indicate that limonene-induced reduction in airway inflammation and airway reactivity occurs mainly via activation of A2AAR but A2B receptors may also play a supporting role.

  相似文献   
8.
The status of lipid peroxidation, glutathione, glutathione peroxidase, glutathione reductase, glutathione-S-transferase, superoxide dismutase, catalase, ascorbic acid, and alpha-tocopherol was studied in the urinary bladder of guinea pigs exposed to the carcinogenic fern Onychium contiguum. There was significant increase in the preformed lipid peroxides in the urinary bladders from fern exposed animals. The amount of lipid peroxides produced on incubation of urinary bladder homogenates with or without catalyst was significantly higher in the fern exposed animals. The concentrations of glutathione and alpha-tocopherol and the activities of glutathione reductase and catalase were elevated in the urinary bladders of the animals exposed to the fern. No effect was observed on the concentration of ascorbic acid and the activities of glutathione peroxidase, glutathione-S-transferase, and superoxide dismutase. It is summarized that the fern toxins increased oxidative stress in the urinary bladder and antioxidant status was altered. However, the altered antioxidant status did not provide protection from the toxin induced injury. Histopathology of the urinary bladder in the fern exposed animals revealed oedema, haemorrhages, and congestion. This is the first study to show increase in lipid peroxidation along with altered antioxidant status in the urinary bladder of fern exposed animals.  相似文献   
9.
Removal of azo dyes from the effluent generated by textile industries is rather difficult. Azo dyes represent a major class of synthetic colorants that are both mutagenic and carcinogenic. Galactomyces geotrichum MTCC 1360, a yeast species, showed more than 96% decolorization of the azo dye Remazol Red (50 mg/L) within 36 h at 30°C and pH 11.0 under static condition with a significant reduction in the chemical oxygen demand (62%) and total organic carbon (41%). Peptone (5.0 g/L), rice husk (10 g/L extract), and ammonium chloride (5.0 g/L) were found to be more significant among the carbon and nitrogen sources used. The presence of tyrosinase, NADH-DCIP reductase, riboflavin reductase and induction in azo reductase and laccase activity during decolorization indicated their role in degradation. High performance thin layer chromatography analysis revealed the degradation of Remazol Red into different metabolites. Fourier transform infrared spectroscopy and high performance liquid chromatography analysis of samples before and after decolorization confirmed the biotransformation of dye. Atomic absorption spectroscopy analysis revealed a less toxic effect of the metabolites on iron uptake by Sorghum vulgare and Phaseolus mungo than Remazol Red dye. Remazol Red showed an inhibitory effect on iron uptake by chelation and an immobilization of iron, whereas its metabolites showed no chelation as well as immobilization of iron. Phytotoxicity study indicated the conversion of complex dye molecules into simpler oxidizable products which had a less toxic nature.  相似文献   
10.
Galactomyces geotrichum MTCC 1360, a yeast species showed 88% ADMI (American dye manufacturing institute) removal of mixture of structurally different dyes (Remazol red, Golden yellow HER, Rubine GFL, Scarlet RR, Methyl red, Brown 3 REL, Brilliant blue) (70 mg l−1) within 24 h at 30 °C and pH 7.0 under shaking condition (120 rpm). Glucose (0.5%) as a carbon source was found to be more effective than other sources used. The medium with metal salt (CaCl2, ZnSO4, FeCl3, MgCl2, CuSO4) (0.5 mM) showed less ADMI removal as compared to control, but did not inhibit complete decolorization. The presence of tyrosinase, NADH-DCIP reductase and induction in laccase activity during decolorization indicated their role in degradation. HPTLC (High performance thin layer chromatography) analysis revealed the removal of individual dyes at different time intervals from dye mixture, indicating preferential degradation of dyes. FTIR (Fourier transform infrared spectroscopy) and HPLC (High performance liquid chromatography) analysis of samples before and after decolorization confirmed the biotransformation of dye. The reduction of COD (Chemical oxygen demand) (69%), TOC (Total organic carbon) (43%), and phytotoxicity study indicated the conversion of complex dye molecules into simpler oxidizable products having less toxic nature.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号