首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  2000年   1篇
  1996年   2篇
  1995年   2篇
  1993年   3篇
  1992年   1篇
  1988年   1篇
  1979年   1篇
  1978年   1篇
  1972年   1篇
  1969年   3篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
1.
In goodeid teleosts, prolonged embryonic development takes place within the ovarian cavity. Apposed maternal and embryonic epithelia interface via a nutritive liquid (embryotrophe) and facilitate aplacental matrotrophy. The role of the internal ovarian epithelium (IOE) in providing proteins for the embryotrophe has been studied using transmission electron-microscopic examinations of both the resting and the active ovarian lining, and isoelectric focusing of embryotrophe and maternal blood serum. The simple IOE is apparently composed of only one, filament-containing cell-type. In the non-gravid ovary these cells are cuboidal to columnar in shape, and are either compact and electron-dense or oedematous and light. During gestation, swelling of the ovarian connective tissue gives rise to dovetailing of the IOE with the subjacent capillary plexus. Part of the IOE overlying the capillaries becomes stretched, resulting in a thin endothelium-like demarcation. The nuclei and the bulk of the cytoplasm are usually recessed between the meshes of the protruding capillary network. The blood-embryotrophe pathway is thus reduced in places, to less than one m. The active form of the IOE contains a well-developed vacuolar apparatus composed of small vesicles, vacuoles, multivesicular bodies, and a few lysosomes. Elements of the RER are sparsely distributed throughout the cytoplasm. Endocytotic activity is observable at the apical and basolateral plasma membrane. Isoelectric focusing of both serum and embryotrophe produces numerous bands each between pI 4–8, which reveal many homologies. The intensity of corresponding bands varies considerably. It is concluded that the cells of the IOE provide a transport pathway for serum-derived macromolecular substances rather than produce proteinaceous secretions.  相似文献   
2.
The bovine tubouterine junction is composed of three parts (terminal tubal segment, transition region proper, uterine apex) and follows a sigmoidal course displaying a tubal and an uterine curvature. In the terminal tubal segment, 4–8 primary longitudinal folds and a system of lower secondary folds, ridges and chords project into the centrally located lumen. The transition region proper possesses a slit-like lumen because of the existence of a thick mucosal pad containing the first uterine glands. The longitudinal primary folds of the tube broaden, flatten and start to diverge when they reach the transition region proper. The mucosal pad and broadened folds are heavily vascularized. A system of lateral outpocketings with blind ends pointing in an ampullary direction develops between the primary and secondary folds, the ridges and chords of the terminal tubal segment and transition region proper. From the bottom of these outpocketings, short tubulo-alveolar crypts originate. The mucosa of the uterine apex forms low transversal ridges. The musculature of the bovine tubouterine junction is divided into a continuous circular or spiral intermediate layer, flanked by inner and outer longitudinal layers. The outer longitudinal layer is incomplete in the terminal tubal segment but increases in thickness to form a continuous stratum in the uterine apex. An inner longitudinal layer occurs only in the terminal tubal segment where it is best developed in the bases of the primary longitudinal folds. The simple columnar surface epithelium of the tubouterine junction contains ciliated and non-ciliated cells. The former undergo cyclical changes, and increase during estrus and postestrus. During proestrus, groups of non-ciliated cells display bulbous apical protrusions. During proestrus and estrus, circumscribed epithelial lesions expose the underlying basal lamina.  相似文献   
3.
4.
5.
The localization of the neural cell adhesion molecule L1 in the male urogenital tract (including seminal vesicles and prostate) of the mouse and bull was investigated using immunocytochemical and immunochemical methods in order to better understand the function of this glycoprotein in non-neural tissues. L1 antibodies labeled non-myelinated nerves in all portions of the urogenital tract investigated. However, L1 immunoreactivity was also found between epithelial cells of several regions of the urogenital system including epididymal tail, deferent duct, ejaculatory duct and seminal vesicles. Some L1 immunoreactivity was also demonstrated between epithelial cells of murine urinary bladder and urethra. The specificity of the immunoreaction was verified by western blots. There was no correlation between L1 expression and proliferating activity as revealed by double immunocytochemistry using various markers of cell proliferation. This unexpected expression of L1 in nonneural tissue is mainly restricted to non-proliferating epithelia of those portions of the urogenital tract that are derived from the Wolffian duct. It is suggested that L1 in these epithelia could enhance the mechanical resistance and reduce transepithelial permeability.  相似文献   
6.
We have used a cytochemical technique to investigate the distribution of acetylcholinesterase (AChE) activity in the deutocerebrum of the brain of the sphinx moth Manduca sexta. To distinguish between extra-and intracellular pools of the enzyme, some brains were treated prior to histochemical staining with echothiophate, an irreversible AChE inhibitor which penetrates cell membranes very slowly and, therefore, inhibits only extracellular AChE. In the antennal nerve, fascicles of presumably mechanosensory fibers show echothiophateinsensitive AChE activity. They bypass the antennal lobe and project to the antennal mechanosensory and motor center of the deutocerebrum. In the antennal lobe, fibers in the coarse neuropil, cell bodies in the lateral cell group, and all glomeruli exhibit AChE activity. In most ordinary glomeruli, echothiophate-sensitive AChE activity is concentrated in the outer cap regions, corresponding to the terminal arborizations of olfactory afferents. A previously unrecognized glomerulus in the ventro-median antennal lobe shows uniform and more intense AChE-specific staining that the other glomeruli. No AChE activity appeared to be associated with malespecific pheromone-sensitive afferents in the macro-glomerular complex. About 67 interneurons with somata in the lateral cell group of the antennal lobe show echo-thiophate-insensitive AChE activity. These neurous seem to be members of two types of antennal-lobe projection neurons with fibers passing through the outer-antenno-cerebral tract to the protocerebrum. AChE-stained arborizations of these neurons appear to invade all glomeruli, including three distinguishable subunits of the male-specific macroglomerular complex. In echothiophate-treated animals, the projections of one of these types of fiber form large terminals in the lateral horn of protocerebrum, which partly protrude into the adjacent glial cell layer. The results suggest that extracellularly accessible AChE is associated with ordinary olfactory receptor terminals but apparently not with pheromone-sensitive afferents. Intracellular AChE appears to be present in antennal mechanosensory fibers and in two types of olfactory projection neurons of the antennal lobe. The study provides further evidence for cholinergic neurotransmission of most antennal afferents. The AChE-containing interneurons might be cholinergic as well or use the enzyme for functions unrelated to hydrolysis of acetylcholine.Abbreviations ACh acetylcholine - AChE acetylcholinesterase - AL antennal lobe - AMMC antennal mechanosensory and motor center - ChAT choline acetyltransferase - IACT inner antenno-cerebral tract - MGC macroglomerular complex  相似文献   
7.
8.
9.
Azotobacter vinelandii strain UA22 was produced by pTn5luxAB mutagenesis, such that the promoterless luxAB genes were transcribed in an iron-repressible manner. Tn5luxAB was localized to a fragment of chromosomal DNA encoding the thrS, infC, rpmI, rplT, pheS and pheT genes, with Tn5 inserted in the 3'-end of pheS. The isolation of this mutation in an essential gene was possible because of polyploidy in Azotobacter, such that strain UA22 carried both wild-type and mutant alleles of pheS. Phenylalanyl-tRNA synthetase activity and PHES::luxAB reporter activity was partially repressed under iron-sufficient conditions and fully derepressed under iron-limited conditions. The ferric uptake regulator (Fur) bound to a DNA sequence immediately upstream of luxAB, within the pheS gene, but PHES::luxAB reporter activity was not affected by phenylalanine availability. This suggests there is novel regulation of pheST in A. vinelandii by iron availability.  相似文献   
10.
The lining epithelium of secretory end pieces and central glandular duct in the seminal vesicle of the water buffalo (Bubalus bubalis) consists of columnar principal and small polymorphous basal cells. A system of intercellular and even intracellular canaliculi enlarges the secretory surface. The most prominent organelle of the columnar principal cells is the granular endoplasmic reticulum, forming large aggregates of parallel lamellae. Using antibodies against the neural cell adhesion molecule L1 and the neural marker protein gene product 9.5 (PGP 9.5), the innervation pattern of the seminal vesicle becomes evident. The muscular layer surrounding the propria contains a dense network of unmyelinated fibers. Thicker bundles traverse the muscular layer to reach the propria. Around glandular secretory tubules and below the epithelial lining of the glandular duct a tightly woven subepithelial plexus is observed which sends short penetrating branches into the basal zone of the epithelium. These intraepithelial nerves are devoid of Schwann cells and basal lamina (naked axons) and are situated within the intercellular spaces between principal and basal cells. Acetylcholinesterase histochemistry with short (1-2 h) incubation times, dopamine-beta-hydroxylase immunohistochemistry and ultrastructural study of transmitter-containing vesicles was performed. The results suggest that muscular contraction in the seminal vesicle is predominantly under the influence of the sympathetic nervous system, whereas secretory epithelial function is regulated by both sympathetic and parasympathetic fibers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号