首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
  国内免费   1篇
  2022年   1篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   1篇
  2014年   1篇
  2011年   2篇
  2010年   2篇
  2009年   3篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  1996年   1篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
1.
The thermostability of the endo-beta-1,4-xylanase from Thermomyces lanuginosus (xynA) was improved by directed evolution using error-prone PCR. Transformants expressing the variant xylanases were first selected on 0.4% Remazol Brilliant Blue-xylan and then exposed to 80 degrees C. Whereas the wild type XynA lost 90% activity after 10 min at 80 degrees C, five mutants displayed both higher stabilities and activities than XynA. Four mutants were subjected to further mutagenesis to improve the stability and activity of the xylanase. Subsequent screening revealed three mutants with enhanced thermostability. Mutant 2B7-10 retained 71% of its activity after treatment at 80 degrees C for 60 min and had a half-life of 215 min at 70 degrees C, which is higher than that attained by XynA. Sequence analysis of second generation mutants revealed that mutations were not concentrated in any particular region of the protein and exhibited much variation. The best mutant obtained from this study was variant 2B7-10, which had a single substitution (Y58F) in beta-sheet A of the protein, which is the hydrophilic, solvent-accessible outer surface of the enzyme. Most of the mutants obtained in this study displayed a compromise between stability and activity, the only exception being mutant 2B7-10. This variant showed increased activity and thermostability.  相似文献   
2.
Ubiquitin carboxy-terminal hydrolase L5 (UCHL5) is a proteasome-associated deubiquitinating enzyme, which, along with RPN11 and USP14, is known to carry out deubiquitination on proteasome. As a member of the ubiquitin carboxy-terminal hydrolase (UCH) family, UCHL5 is unusual because, unlike UCHL1 and UCHL3, it can process polyubiquitin chain. However, it does so only when it is bound to the proteasome; in its free form, it is capable of releasing only relatively small leaving groups from the C-terminus of ubiquitin. Such a behavior might suggest at least two catalytically distinct forms of the enzyme, an apo form incapable of chain processing activity, and a proteasome-induced activated form capable of cleaving polyubiquitin chain. Through the crystal structure analysis of two truncated constructs representing the catalytic domain (UCH domain) of this enzyme, we were able to visualize a state of this enzyme that we interpret as its inactive form, because the catalytic cysteine appears to be in an unproductive orientation. While this work was in progress, the structure of a different construct representing the UCH domain was reported; however, in that work the structure reported was that of an inactive mutant [catalytic Cys to Ala; Nishio K et al. (2009) Biochem Biophys Res Commun 390, 855-860], which precluded the observation that we are reporting here. Additionally, our structures reveal conformationally dynamic parts of the enzyme that may play a role in the structural transition to the more active form.  相似文献   
3.
The aim of this study was to clone, express, and characterize a β-xylosidase (Tlxyn1) from the thermophilic fungus Thermomyces lanuginosus SSBP in Pichia pastoris GS115 as well as analyze optimal activity and stability using computational and experimental methods. The enzyme was constitutively expressed using the GAP promoter and secreted into the medium due to the alpha-mating factor secretion signal present on the expression vector pBGPI. The 1276 bp gene consists of an open reading frame that does not contain introns. A 12% SDS–PAGE gel revealed a major protein band at an estimated molecular mass of 50 kDa which corresponded to zymogram analysis. The three-dimensional structure of β-xylosidase was predicted, and molecular dynamics simulations at different ranges of temperature and pH were performed in order to predict optimal activity and folding energy. The results suggested a strong conformational temperature and pH dependence. The recombinant enzyme exhibited optimal activity at pH 7 and 50°C and retained 80% activity at 50°C, pH 7 for about 45 min. This is the first report of the cloning, functional expression, and simulations study of a β-xylosidase from Thermomyces species in a fungal host.  相似文献   
4.
Thermomyces lanuginosus is a thermophilic fungus known for its ability to produce industrially important enzymes including large amounts of xylanase, the key enzyme in hemicellulose hydrolysis. The secretome of T. lanuginosus SSBP was profiled by shotgun proteomics to elucidate important enzymes involved in hemicellulose saccharification and to characterise the presence of other industrially interesting enzymes. This study reproducibly identified a total of 74 proteins in the supernatant following growth on corn cobs. An analysis of proteins revealed nine glycoside hydrolase (GH) enzymes including xylanase GH11, β-xylosidase GH43, β-glucosidase GH3, α-galactosidase GH36 and trehalose hydrolase GH65. Two commercially produced Thermomyces enzymes, lipase and amylase, were also identified. In addition, other industrially relevant enzymes not currently explored in Thermomyces were identified including glutaminase, fructose-bisphosphate aldolase and cyanate hydratase. Overall, these data provide insight into the novel ability of a cellulase-free fungus to utilise lignocellulosic material, ultimately producing a number of enzymes important to various industrial processes.  相似文献   
5.
Abstract

The fungal chitinase I obtained from Thermomyces lanuginosus SSBP, a thermophilic deuteromycete, has an optimum growth temperature and pH of 323.15 K and 6.5, respectively. This enzyme plays an important task in the defence mechanism of organisms against chitin-containing parasites by hydrolysing β-1, 4-linkages in chitin. It acts as both anti-fungal and biofouling agents, with some being thermostable and suitable for the industrial applications. Three-dimensional model of chitinase I enzyme was predicted and analysed using various bioinformatics tools. The structure of chitinase I exhibited a well-defined TIM barrel topology with an eight-stranded α/β domain. Structural analysis and folding studies at temperatures ranging from 300 to 375 K using 10 ns molecular dynamics simulations clearly showed the stability of the protein was evenly distributed even at higher temperatures, in accordance with the experimental results. We also carried out a number of 20 ns constant pH molecular dynamics simulations of chitinase I at a pH range 2–6 in a solvent. This work was aimed at establishing the optimum activity and stability profiles of chitinase I. We observed a strong conformational pH dependence of chitinase I and the enzyme retained their characteristic TIM barrel topology at low pH.  相似文献   
6.
A cellulase-free xylanase production by Thermomyces lanuginosus SSBP using bagasse pulp was examined under submerged (SmC) and solid-state cultivation (SSC). Higher level of xylanase activity (19,320 ± 37 U g−1 dried carbon source) was obtained in SSC cultures than in SmC (1,772 ± 15 U g−1 dried carbon source) after 120 h with 10% inoculum. The biobleaching efficacy of crude xylanase was tested on bagasse pulp, and the maximum brightness of 46.1 ± 0.06% was observed with 50 U of crude xylanase per gram of pulp, which was 3.8 points higher than the brightness of untreated samples. Reducing sugars (26 ± 0.1 mg g−1) and UV-absorbing lignin-derived compounds in the pulp filtrates were observed as maximum in 50 U of crude xylanase-treated samples. T. lanuginosus SSBP has potential applications due to its high productivity of xylanase and its efficiency in pulp bleaching.  相似文献   
7.
Bacillus licheniformis is a well-known platform strain for production of industrial enzymes. However, the development of genetically stable recombinant B. licheniformis for high-yield enzyme production is still laborious. Here, a pair of plasmids, pUB-MazF and pUB''-EX1, were firstly constructed. pUB-MazF is a thermosensitive, self-replicable plasmid. It was able to efficiently cure from the host cell through induced expression of an endoribonuclease MazF, which is lethal to the host cell. pUB′-EX1 is a nonreplicative and integrative plasmid. Its replication was dependent on the thermosensitive replicase produced by pUB-MazF. Transformation of pUB′-EX1 into the B. licheniformis BL-UBM harboring pUB-MazF resulted in both plasmids coexisting in the host cell. At an elevated temperature, and in the presence of isopropyl-1-thio-β-d-galactopyranoside and kanamycin, curing of the pUB-MazF and multiple-copy integration of pUB′-EX1 occurred, simultaneously. Through this procedure, genetically stable recombinants integrated multiple copies of amyS, from Geobacillus stearothermophilus ATCC 31195 were facilely obtained. The genetic stability of the recombinants was verified by repeated subculturing and shaking flask fermentations. The production of α-amylase by recombinant BLiS-002, harboring five copies of amyS, in a 50-l bioreactor reached 50 753 U/ml after 72 hr fermentation. This strategy therefore has potential for production of other enzymes in B. licheniformis and for genetic modification of other Bacillus species.  相似文献   
8.
Xanthomonas campestris pv phaseoli produced an extracellular endoinulinase (9.24 ± 0.03 U mL−1) in an optimized medium comprising of 3% sucrose and 2.5% tryptone. X. campestris pv. phaseoli was further subjected to ethylmethanesulfonate mutagenesis and the resulting mutant, X. campestris pv. phaseoli KM 24 demonstrated inulinase production of 22.09 ± 0.03 U mL−1 after 18 h, which was 2.4-fold higher than that of the wild type. Inulinase production by this mutant was scaled up using sucrose as a carbon source in a 5-L fermenter yielding maximum volumetric (21,865 U L−1 h−1) and specific (119,025 U g−1 h−1) productivities of inulinase after 18 h with an inulinase/invertase ratio of 2.6. A maximum FOS production of 11.9 g L−1 h−1 and specific productivity of 72 g g−1 h−1 FOS from inulin were observed in a fermenter, when the mutant was grown on medium containing 3% inulin and 2.5% tryptone. The detection of mono- and oligosaccharides in inulin hydrolysates by TLC analysis indicated the presence of an endoinulinase. This mutant has potential for large-scale production of inulinase and fructooligosaccharides.  相似文献   
9.
In the Klebsiella pneumoniae reduction pathway for 1,3-propanediol (1,3-PD) synthesis, glycerol is first dehydrated to 3-hydroxypropionaldehyde (3-HPA) and then reduced to 1,3-PD with NADH consumption. Rapid conversion of 3-HPA to 1,3-PD is one of the ways to improve the yield of 1,3-PD from glycerol and to avoid 3-HPA accumulation, which depends on enzyme activity of the reaction and the amount of reducing equivalents available from the oxidative pathway of glycerol. In the present study, the yqhD gene, encoding 3-propanediol oxidoreductase isoenzyme from Escherichia coli and the dhaT gene, encoding 3-propanediol oxidoreductase from K. pneumoniae were expressed individually and co-expressed in K. pneumoniae using the double tac promoter expression plasmid pEtac-dhaT-tac-yqhD. The three resultant recombinant strains (K. pneumoniae/pEtac-yqhD, K. pneumoniae/pEtac-dhaT, and K. pneumoniae/pEtac-dhaT-tac-yqhD) were used for fermentation studies. Experimental results showed that the peak values for 3-HPA production in broth of the three recombinant strains were less than 25% of that of the parent strain. Expression of dhaT reduced formation of by-products (ethanol and lactic acid) and increased molar yield of 1,3-PD slightly, while expression of yqhD did not enhance molar yield of 1,3-PD, but increased ethanol concentration in broth as NADPH participation in transforming 3-HPA to 1,3-PD allowed more cellular NADH to be used to produce ethanol. Co-expression of both genes therefore decreased by-products and increased the molar yield of 1,3-PD by 11.8%, by catalyzing 3-HPA conversion to 1,3-propanediol using two cofactors (NADH and NADPH). These results have important implications for further studies involving use of YqhD and DhaT for bioconversion of glycerol into 1,3-PD.  相似文献   
10.
G protein-induced trafficking of voltage-dependent calcium channels   总被引:4,自引:0,他引:4  
Calcium channels are well known targets for inhibition by G protein-coupled receptors, and multiple forms of inhibition have been described. Here we report a novel mechanism for G protein-mediated modulation of neuronal voltage-dependent calcium channels that involves the destabilization and subsequent removal of calcium channels from the plasma membrane. Imaging experiments in living sensory neurons show that, within seconds of receptor activation, calcium channels are cleared from the membrane and sequestered in clathrin-coated vesicles. Disruption of the L1-CAM-ankyrin B complex with the calcium channel mimics transmitter-induced trafficking of the channels, reduces calcium influx, and decreases exocytosis. Our results suggest that G protein-induced removal of plasma membrane calcium channels is a consequence of disrupting channel-cytoskeleton interactions and might represent a novel mechanism of presynaptic inhibition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号