首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2017年   4篇
  2016年   4篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2008年   2篇
  2004年   2篇
  2001年   2篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
1.
2.
The lysoamidase bacteriolytic complex (LBC) comprising five enzymes (L1–L5) is secreted into the culture liquid by gram-negative bacterium Lysobacter sp. XL1. The medicinal agent lysoamidase has a broad-antimicrobial spectrum. Bacteriolytic protease L1 belongs to the LBC. Recombinant L1 protease of Lysobacter sp. XL1 was expressed, purified to homogeneity and crystallized. The X-ray structure of L1 at 1.35 Å resolution has been determined using the synchrotron data and the molecular replacement method. L1 protease is a thermostable whose thermal unfolding proceeds in one step without forming stable intermediates. Structural information concerning L1 will contribute to the development of new-generation antimicrobial drugs, whose application will not be accompanied by the selection of resistant microorganisms.  相似文献   
3.
Doklady Biochemistry and Biophysics - Melatonin is a signaling molecule that mediates multiple stress-dependent reactions. Under photooxidative stress conditions generating intensive ROS...  相似文献   
4.
We studied the effects of cytokinin benzyladenine (BA) and ethylene on the senescence in the dark of detached leaves of Arabidopsis thaliana(L.) Heynh wild-type plants and theeti-5mutant, which was described in the literature as the ethylene-insensitive one. Leaf senescence was assessed from a decrease in the chlorophyll content. The content of endogenous cytokinins (zeatin and zeatin riboside) was estimated by the ELISA technique. We demonstrated that the content of endogenous cytokinins in the leaves of the three-week-old eti-5mutants exceeded that of the wild-type leaves by an order of magnitude; in the five-week-old mutants, by several times; and in the seven-week-old plants, the difference became insignificant. Due to the excess of endogenous cytokinins in the three–five-week-old mutant leaves, their senescence in the dark was retarded and exogenous cytokinin affected these leaves to a lesser extent. The seven-week-old mutant and the wild-type leaves, which contained practically similar amounts of endogenous cytokinins, did not differ in these indices. Thus, the level of endogenous cytokinins determined the rate of senescence and the leaf response to cytokinin treatment. Ethylene accelerated the senescence of detached wild-type leaves. Ethylene action increased with increasing its concentration from 0.1 to 100 l/l. BA (10–6M) suppressed ethylene action. Similar data were obtained for the eti-5mutant leaves. We therefore suggest that the mutant leaves comprised the pathways of the ethylene signal reception and transduction, which provided for the acceleration of their senescence.  相似文献   
5.
Doklady Biochemistry and Biophysics - The expression profiles of the PAP genes, encoding proteins associated with plastid multisubunit RNA polymerase, were studied in dry seeds, during germination,...  相似文献   
6.
Transgenic Arabidopsis thaliana plants carrying the GUS reporter gene fused to the promoter of the gene of primary response to cytokinins (CKs), ARR5, were used to estimate the influence of several brassinosteroids (BRs): brassinolide (BL), epibrassinolide (EBL), homobrassinolide (HBL), and 6-o-carboxymethyloxohomocastasterone (CHC) on the expression of CK signalling genes. BRs tested differed in their ability to activate the ARR5 gene promoter in 4-day-old seedlings and 3-week-old plants. BL caused the most prominent effect, yet it was considerably less than that of 6-benzylaminopurine (BA). An increase in GUS activity was observed in both dark and light conditions; however, the rate of elevation was higher in dark conditions. The activation of the P ARR5 :GUS fusion was accompanied by a moderate induction of the P AHK :GUS constructs, in which the reporter GUS gene was fused to the promoter of one of the CK receptor histidine kinases. The effects of BL on the AHK gene promoters were organ specific and correlated with the ability of a particular AHK gene to respond to BA treatment. BL activated the AHK3 promoter in 4-day-old seedlings and in shoots and roots of 3-week-old plants without any effect in detached leaves. The AHK2 gene promoter was activated by BA and BL only in seedlings, whereas the AHK4 gene promoter was activated only in roots. BL treatment caused the coordinate elevation of the CK levels in leaves to the same degree as the activation of the P AHK :GUS construct, suggesting that the accumulation of CKs was the reason for the activation by BRs of the CK signalling genes. The data obtained provide the evidence for the involvement of BRs in the regulation of the genes of the CK signalling pathway through an increase in the CK levels. However, the exact molecular mechanisms underlying BR-induced elevation of the CK content are unclear and warrant identification in the future.  相似文献   
7.
8.
9.

The Gram-negative bacterium Lysobacter sp. XL1 secretes into the extracellular space five bacteriolytic enzymes that lyse the cell walls of competing microorganisms. Of special interest are homologous lytic proteases L1 and L5. This work found protein L5 to possess Gly-Gly endopeptidase and N-acetylmuramoyl-l-Ala amidase activities with respect to staphylococcal peptidoglycan. Protein L5 was found to be capable of aggregating into amyloid-like fibril structures. The crystal structure of protein L5 was determined at a 1.60-Å resolution. Protein L5 was shown to have a rather high structural identity with bacteriolytic protease L1 of Lysobacter sp. XL1 and α-lytic protease of Lysobacter enzymogenes at a rather low identity of their amino acid sequences. Still, the structure of protein L5 was revealed to have regions that differed from their equivalents in the homologs. The revealed structural distinctions in L5 are suggested to be of importance in exhibiting its unique properties.

  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号