首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  2021年   1篇
  2019年   1篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2005年   1篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  1972年   1篇
  1968年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
2.
Kubec R  Kim S  Musah RA 《Phytochemistry》2003,63(1):37-40
The lachrymatory principle of Petiveria alliacea has been isolated from a fresh homogenate of the root. Its structure and geometric configuration have been determined as (Z)-thiobenzaldehyde S-oxide by means of NMR, IR, MALDI-MS and by comparison with an authentic compound obtained by synthesis. This unique compound represents only the third naturally occurring sulfine (thiocarbonyl S-oxide) to be reported. Its formation and possible subsequent rearrangements are discussed. Its antibacterial and antifungal activities are also reported.  相似文献   
3.
He Q  Kubec R  Jadhav AP  Musah RA 《Phytochemistry》2011,72(16):1939-1946
A study of an enzyme that reacts with the sulfenic acid produced by the alliinase in Petiveria alliacea L. (Phytolaccaceae) to yield the P. alliacea lachrymator (phenylmethanethial S-oxide) showed the protein to be a dehydrogenase. It functions by abstracting hydride from sulfenic acids of appropriate structure to form their corresponding sulfines. Successful hydride abstraction is dependent upon the presence of a benzyl group on the sulfur to stabilize the intermediate formed on abstraction of hydride. This dehydrogenase activity contrasts with that of the lachrymatory factor synthase (LFS) found in onion, which catalyzes the rearrangement of 1-propenesulfenic acid to (Z)-propanethial S-oxide, the onion lachrymator. Based on the type of reaction it catalyzes, the onion LFS should be classified as an isomerase and would be called a “sulfenic acid isomerase”, whereas the P. alliacea LFS would be termed a “sulfenic acid dehydrogenase”.  相似文献   
4.
Kubec R  Musah RA 《Phytochemistry》2005,66(20):2494-2497
Three gamma-glutamyl dipeptides have been isolated from Petiveria alliacea L. roots. These dipeptides include (S(C2)R(C7))-gamma-glutamyl-S-benzylcysteine together with two diastereomeric sulfoxides, namely (S(C2)R(C7)R(S))- and (S(C2)R(C7)R(S))-gamma-glutamyl-S-benzylcysteine S-oxides (gamma-glutamyl-petiveriins A and B, respectively). Their structures and absolute configurations have been determined by NMR, MALDI-HRMS, IR and CD spectroscopy, and confirmed by comparison with authentic compounds obtained by synthesis.  相似文献   
5.

The spread of non-native species results in novel and often unexpected assemblages. Using stable isotopes, we disentangled the trophic relationships between three invasive crayfish species at two sites of a small thermal tributary of the Barát stream, Hungary. We studied Procambarus virginalis and Faxonius limosus living in sympatry in the upper section of this thermal tributary, and then an assemblage in a lower section also containing P. clarkii. The two species in the upper section largely shared trophic niches, although P. virginalis was more carnivorous than F. limosus, which fed more on detritus and aquatic plants. In the lower section, P. clarkii had a distinctive trophic niche, being more carnivorous than the other species and also preying on other crayfish and fish. The trophic niches of the other two species shifted slightly, being narrower and more overlapping in the presence of P. clarkii. It seems that the presence of P. clarkii affects the feeding habits and trophic niches of the other two crayfish. Our results also indicate that the species have somewhat distinctive feeding niches, which suggests that the ecosystem effects of these species are likely to be at least partially additive in the shared localities.

  相似文献   
6.
Identification and isolation of (R(S)R(C))-S-(methylthiomethyl)cysteine-4-oxide from rhizomes of Tulbaghia violacea Harv. is reported. The structure and absolute configuration of the amino acid have been determined by NMR, MALDI-HRMS, IR, and CD spectroscopy. Its content varied in different parts of the plant (rhizomes, leaves, and stems) between 0.12 and 0.24 mg g(-1) fr. wt, being almost equal in the stems and rhizomes. In addition, S-methyl- and S-ethylcysteine derivatives have been detected in minute amounts (<3 microg g(-1) fr. wt) in all parts of the plant. The enzymatic cleavage of the amino acid and subsequent odor formation are discussed. 2,4,5,7-Tetrathiaoctane-4-oxide, the primary breakdown product, has been detected and isolated for the first time.  相似文献   
7.
Kubec R  Kim S  Musah RA 《Phytochemistry》2002,61(6):675-680
Three cysteine derivatives, (R)-S-(2-hydroxyethyl)cysteine, together with (R(S)R(C))- and (S(S)R(C))-S-(2-hydroxyethyl)cysteine sulfoxides, have been isolated from the roots of Petiveria alliacea. Furthermore, three additional amino acids, S-methyl-, S-ethyl-, and S-propylcysteine derivatives, were detected. They were present only in trace amounts (<3 microg g(-1) fr. wt), precluding determination of their absolute configurations and oxidation states. In addition, four thiosulfinates, S-(2-hydroxyethyl) (2-hydroxyethane)-, S-(2-hydroxyethyl) phenylmethane-, S-benzyl (2-hydroxyethane)- and S-benzyl phenylmethanethiosulfinates, have been found in a homogenate of the roots. The formation pathways of various benzyl/phenyl-containing compounds previously found in the plant were also discussed.  相似文献   
8.
A novel lachrymatory factor synthase (LFS) was isolated and purified from the roots of the Amazonian medicinal plant Petiveria alliacea. The enzyme is a heterotetrameric glycoprotein comprised of two α-subunits (68.8 kD each), one γ-subunit (22.5 kD), and one δ-subunit (11.9 kD). The two α-subunits are glycosylated and connected by a disulfide bridge. The LFS has an isoelectric point of 5.2. It catalyzes the formation of a sulfine lachrymator, (Z)-phenylmethanethial S-oxide, only in the presence of P. alliacea alliinase and its natural substrate, S-benzyl-l-cysteine sulfoxide (petiveriin). Depending on its concentration relative to that of P. alliacea alliinase, the LFS sequesters, to varying degrees, the sulfenic acid intermediate formed by alliinase-mediated breakdown of petiveriin. At LFS:alliinase of 5:1, LFS sequesters all of the sulfenic acid formed by alliinase action on petiveriin, and converts it entirely to (Z)-phenylmethanethial S-oxide. However, starting at LFS:alliinase of 5:2, the LFS is unable to sequester all of the sulfenic acid produced by the alliinase, with the result that sulfenic acid that escapes the action of the LFS condenses with loss of water to form S-benzyl phenylmethanethiosulfinate (petivericin). The results show that the LFS and alliinase function in tandem, with the alliinase furnishing the sulfenic acid substrate on which the LFS acts. The results also show that the LFS modulates the formation of biologically active thiosulfinates that are downstream of the alliinase in a manner dependent upon the relative concentrations of the LFS and the alliinase. These observations suggest that manipulation of LFS-to-alliinase ratios in plants displaying this system may provide a means by which to rationally modify organosulfur small molecule profiles to obtain desired flavor and/or odor signatures, or increase the presence of desirable biologically active small molecules.Lachrymatory factor synthase (LFS) is the term coined to refer to the recently discovered enzyme shown to catalyze the formation of the sulfine responsible for the lachrymatory effect of onion (Allium cepa), (Z)-propanethial S-oxide (PTSO; Imai et al., 2002). Until the discovery of the onion LFS, the formation of the onion lachrymatory factor (LF) was thought to be mediated by only a single enzyme, onion alliinase. Alliinases, which are pyridoxal 5′-P (PLP)-dependent Cys sulfoxide lyases most often found in members of the Allium genus, catalyze the breakdown of Cys sulfoxide derivatives to yield fleeting sulfenic acid intermediates and α-aminoacrylic acid (Scheme 1; Block, 1992; Shimon et al., 2007). Once formed, the sulfenic acids are most often observed to spontaneously condense with loss of water to form thiosulfinates, whereas the α-aminoacrylic acid is further hydrolyzed with loss of ammonia to form pyruvate. The S-substituted Cys sulfoxides that are acted upon by alliinases differ from one another by the identity of the sulfur-bound R group. In Allium plants, the R groups are alk(en)yl, with R = methyl and 2-propenyl appearing in large quantities in garlic (Allium sativum) and R = methyl and (E)-1-propenyl preponderating in onion (Scheme 1). The Cys sulfoxide that serves as the precursor of the onion lachrymator is (E)-S-(1-propenyl)-l-Cys sulfoxide (isoalliin). It is structurally distinct from other naturally occurring S-substituted Cys sulfoxides so far reported in that it is α,β-unsaturated. This structural feature affords its corresponding 1-propenylsulfenic acid (PSA) the possibility of undergoing a [1,4]-sigmatropic rearrangement that, in principle, would furnish the onion lachrymator, PTSO. Indeed, the formation of the onion lachrymator was proposed to occur by such a mechanism (Scheme 2; Block, 1992). Thus, it was surmised that were the α,β-unsaturation to be absent in the precursor S-substituted Cys sulfoxide, the [1,4]-sigmatropic rearrangement that would lead to sulfine formation could not occur. Consequently, it was not surprising that other S-substituted Cys sulfoxides constitutively present in garlic, onion, and other alliinase-containing plants, but devoid of this α,β-unsaturation in the sulfur-bound R group, did not themselves yield lachrymators on plant tissue wounding. It has since been discovered, however, that formation of the onion lachrymator is not catalyzed by onion alliinase, but instead by a novel class of enzyme—LFS. Imai et al. (2002) observed that although a crude preparation of onion alliinase yielded both the LF and the corresponding thiosulfinate, the protein fraction with lachrymator-forming ability could be completely separated from that with alliinase activity by passing the crude onion protein preparation through a hydroxyapatite column. The LFS was subsequently purified and shown to be highly substrate specific, producing the LF from only (E)-S-(1-propenyl)-l-Cys sulfoxide (isoalliin), which occurs constitutively in onion. Interestingly, the LF was detected only when three components, namely, the purified onion alliinase, isoalliin, and the onion LFS, were present in the reaction mixture simultaneously (Imai et al., 2002). Omission of the LFS from the reaction mixture resulted in an increased yield of thiosulfinates, but no LF. Although the complete cDNA sequence of the onion LFS has been determined (Imai et al., 2002), to our knowledge, full biochemical characterization of the enzyme has yet to be reported.Open in a separate windowScheme 1.Alliinase-mediated formation of thiosulfinates from Cys sulfoxide precursors (Block, 1992; Shimon et al., 2007). Alliin is S-allyl-l-Cys sulfoxide, isoalliin is (E)-S-(1-propenyl)-l-Cys sulfoxide, methiin is S-methyl-l-Cys sulfoxide, and propiin is S-propyl-l-Cys sulfoxide.Open in a separate windowScheme 2.Mechanism advanced by Block (1992) to account for formation of the onion lachrymator, PTSO. Alliinase-bound PLP forms a Schiff base with bound isoalliin. General base catalysis at the active site yields an α,β-unsaturated sulfenic acid that can undergo a [1,4]-sigmatropic rearrangement to furnish the sulfine.In the course of our studies on the organosulfur chemistry of non-Allium plants, we isolated and characterized the S-benzyl-l-Cys sulfoxides (petiveriins) and S-(2-hydroxyethyl)-l-Cys sulfoxides (2-hydroxyethiins) from the Amazonian medicinal plant Petiveria alliacea (Fig. 1; Kubec and Musah, 2001; Kubec et al., 2002). These compounds are S-substituted Cys sulfoxide derivatives with R = benzyl and 2-hydroxyethyl, respectively, that, to our knowledge, had never before been isolated from plants. We showed that, as has been observed in garlic and onion, symmetrical and mixed thiosulfinate derivatives of the corresponding petiveriin and 2-hydroxyethiin precursors could be extracted with ether solvent (Fig. 1; Kubec et al., 2002) upon root tissue disruption. We have also shown that an alliinase that mediates the transformation of the petiveriins and 2-hydroxyethiins to their corresponding thiosulfinates is present in P. alliacea (Musah et al., 2009). Interestingly, while working with P. alliacea root extracts, we noted the presence of a potent lachrymator that we subsequently determined to be a sulfine—(Z)-phenylmethanethial S-oxide (PMTSO; Fig. 2; Kubec et al., 2003). However, the biochemical precursor of PMTSO and the pathway(s) leading to its formation upon disruption of P. alliacea tissue remain to be determined. Given that the onion LF (PTSO), whose formation is mediated by an LFS, is also a sulfine, we were prompted to investigate the possibility of the presence of a LFS in P. alliacea. In this report, we describe our confirmation of the existence of a LFS in P. alliacea, and detail biochemical characterization of this novel class of enzymes.Open in a separate windowFigure 1.Cys sulfoxides and their corresponding thiosulfinate derivatives isolated from the Amazonian medicinal plant P. alliacea. The breakdown of the Cys sulfoxides is mediated by P. alliacea alliinase.Open in a separate windowFigure 2.Lachrymatory sulfine isolated from P. alliacea.  相似文献   
9.
R Kubec  R A Musah 《Phytochemistry》2001,58(6):981-985
Two diastereomers of S-benzyl-L-cysteine sulfoxide have been isolated from fresh roots of Petiveria alliacea. Their structures and absolute configurations have been determined by NMR, MALDI-HRMS, IR and CD spectroscopy and confirmed by comparison with authentic compounds. Both the R(S) and S(S) diastereomers of the sulfoxide are present in all parts of the plant (root, stem, and leaves) with the latter diastereomer being predominant. Their total content greatly varied in different parts of the plant between 0.07 and 2.97 mg g(-1) fr. wt, being by far the highest in the root. S-Benzylcysteine has also been detected in trace amounts (<10 microg g(-1) fr. wt) in all parts of the plant. This represents the first report of the presence of S-benzylcysteine derivatives in nature.  相似文献   
10.
Using a microplate-based screening assay, the effects on Pseudomonas aeruginosa PAO1 biofilm formation of several S-substituted cysteine sulfoxides and their corresponding disulfide derivatives were evaluated. From our library of compounds, S-phenyl-L-cysteine sulfoxide and its breakdown product, diphenyl disulfide, significantly reduced the amount of biofilm formation by P. aeruginosa at levels equivalent to the active concentration of 4-nitropyridine-N-oxide (NPO) (1 mM). Unlike NPO, which is an established inhibitor of bacterial biofilms, our active compounds did not reduce planktonic cell growth and only affected biofilm formation. When used in a Drosophila-based infection model, both S-phenyl-L-cysteine sulfoxide and diphenyl disulfide significantly reduced the P. aeruginosa recovered 18 h post infection (relative to the control), and were non-lethal to the fly hosts. The possibility that the observed biofilm inhibitory effects were related to quorum sensing inhibition (QSI) was investigated using Escherichia coli-based reporters expressing P. aeruginosa lasR or rhIR response proteins, as well as an endogenous P. aeruginosa reporter from the lasI/lasR QS system. Inhibition of quorum sensing by S-phenyl-L-cysteine sulfoxide was observed in all of the reporter systems tested, whereas diphenyl disulfide did not exhibit QSI in either of the E. coli reporters, and showed very limited inhibition in the P. aeruginosa reporter. Since both compounds inhibit biofilm formation but do not show similar QSI activity, it is concluded that they may be functioning by different pathways. The hypothesis that biofilm inhibition by the two active compounds discovered in this work occurs through QSI is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号