首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   4篇
  2018年   2篇
  2015年   1篇
  2014年   2篇
  2013年   7篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2005年   2篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1994年   1篇
  1992年   4篇
  1991年   4篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1974年   1篇
  1938年   1篇
排序方式: 共有52条查询结果,搜索用时 15 毫秒
1.
2.
Trifluorothymidine (TFT), a potent anticancer agent, inhibits thymidylate synthase (TS) and is incorporated into the DNA, both events resulting in cell death. Cell death induction related to DNA damage often involves activation of p53. We determined the role of p53 in TFT cytotoxicity and cell death induction, using, respectively, the sulforhodamine B-assay and FACS analysis, in a panel of cell lines with either wild type, inactive, or mutated p53. Neither TFT cytotoxicity nor cell death induction changed with TFT exposure in cell lines with wt, inactive or mutated p53. Conclusion: sensitivity to TFT is not dependent on the expression of wt p53.  相似文献   
3.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can induce both caspase-dependent apoptosis and kinase activation in tumor cells. Here, we examined the consequences and mechanisms of TRAIL-induced MAPKs p38 and JNK in non-small cell lung cancer (NSCLC) cells. In apoptosis sensitive H460 cells, these kinases were phosphorylated, but not in resistant A549 cells. Time course experiments in H460 cells showed that induction of p38 phosphorylation preceded that of JNK. To explore the function of these kinases in apoptosis activation by TRAIL, chemical inhibitors or siRNAs were employed to impair JNK or p38 functioning. JNK activation counteracted TRAIL-induced apoptosis whereas activation of p38 stimulated apoptosis. Notably, the serine/threonine kinase RIP1 was cleaved following TRAIL treatment, concomitant with detectable JNK phosphorylation. Further examination of the role of RIP1 by short hairpin (sh)RNA-dependent knockdown or inhibition by necrostatin-1 showed that p38 can be phosphorylated in both RIP1-dependent and -independent manner, whereas JNK phosphorylation occurred independent of RIP1. On the other hand JNK appeared to suppress RIP1 cleavage via an unknown mechanism. In addition, only the activation of JNK by TRAIL was caspase-8-dependent. Finally, we identified Mcl-1, a known substrate for p38 and JNK, as a downstream modulator of JNK or p38 activity. Collectively, our data suggest in a subset of NSCLC cells a model in which TRAIL-induced activation of p38 and JNK have counteracting effects on Mcl-1 expression leading to pro- or anti-apoptotic effects, respectively. Strategies aiming to stimulate p38 and inhibit JNK may have benefit for TRAIL-based therapies in NSCLC.  相似文献   
4.
5.
Glioblastoma (GBM) is a highly infiltrative brain tumor in which cells with properties of stem cells, called glioblastoma stem cells (GSCs), have been identified. In general, the dominant view is that GSCs are responsible for the initiation, progression, invasion and recurrence of this tumor. In this study, we addressed the question whether the differentiation status of GBM cells is associated with their invasive capacity. For this, several primary GBM cell lines were used, cultured either as neurospheres known to enrich for GSCs or in medium supplemented with 10% FCS that promotes differentiation. The differentiation state of the cells was confirmed by determining the expression of stem cell and differentiation markers. The migration/invasion potential of these cells was tested using in vitro assays and intracranial mouse models. Interestingly, we found that serum-induced differentiation enhanced the invasive potential of GBM cells, which was associated with enhanced MMP9 expression. Chemical inhibition of MMP9 significantly reduced the invasive potential of differentiated cells in vitro. Furthermore, the serum-differentiated cells could revert back to an undifferentiated/stem cell state that were able to form neurospheres, although with a reduced efficiency as compared to non-differentiated counterparts. We propose a model in which activation of the differentiation program in GBM cells enhances their infiltrative potential and that depending on microenvironmental cues a significant portion of these cells are able to revert back to an undifferentiated state with enhanced tumorigenic potential. Thus, effective therapy should target both GSCs and differentiated offspring and targeting of differentiation-associated pathways may offer therapeutic opportunities to reduce invasive growth of GBM.  相似文献   
6.
Dynamic subcellular localization is an important regulatory mechanism for many proteins. cIAP1 and cIAP2 are two closely related members of inhibitor of apoptosis (IAP) family that play a role both as caspase inhibitors and as mediators of tumor necrosis factor (TNF) receptor signaling. Here, we report that cIAP1 and cIAP2 are nuclear shuttling proteins, whose subcellular localization is mediated by the CRM1-dependent nuclear export pathway. Blocking export with leptomycin B induces accumulation of both endogenous cIAP1 and epitope-tagged cIAP1 and cIAP2 in the nucleus of human cancer cells. We have identified a new CRM1-dependent leucine-rich nuclear export signal (NES) in the linker region between cIAP1 BIR2 and BIR3 repeats. Mutational inactivation of the NES, which is not conserved in cIAP2, reduces cIAP1 nuclear export. Forced relocation of cIAP1 to the nucleus did not significantly alter its ability to prevent apoptosis. Interestingly, co-expression experiments showed that the cIAP1 and cIAP2-interacting protein TNF receptor-associated factor 2 (TRAF2) plays an important role as regulator of IAP nucleocytoplasmic localization, by preventing nuclear translocation of cIAP1 and cIAP2. TRAF2-mediated cytoplasmic retention of cIAP1 was reduced upon TNFalpha treatment. Our results identify molecular mechanisms that contribute to regulate the subcellular localization of cIAP1 and cIAP2. Translocation between different cell compartments may add a further level of control for cIAP1 and cIAP2 activity.  相似文献   
7.
Trifluorothymidine (TFT), a potent anticancer agent, inhibits thymidylate synthase (TS) and is incorporated into the DNA, both events resulting in cell death. Cell death induction related to DNA damage often involves activation of p53. We determined the role of p53 in TFT cytotoxicity and cell death induction, using, respectively, the sulforhodamine B-assay and FACS analysis, in a panel of cell lines with either wild type, inactive, or mutated p53. Neither TFT cytotoxicity nor cell death induction changed with TFT exposure in cell lines with wt, inactive or mutated p53. Conclusion: sensitivity to TFT is not dependent on the expression of wt p53.  相似文献   
8.
9.
Recently three isoforms of the mouse retinoic acid receptor (mRAR beta 1, mRAR beta 2, mRAR beta 3) have been described, generated from the same gene (Zelent et al., 1991). The isoforms differ in their 5'-untranslated (5'-UTR) and A region, but have identical B to F regions. The N-terminal variability of mRAR beta 1/beta 3 is encoded in the first two exons (E1 and E2), while exon E3 includes N-terminal sequences of the mRAR beta 2 isoform. We have determined the structure of the human RAR beta 2 gene, using a genomic library from K562 cells. The open reading frame is split into eight exons: E3 contains sequences for the N-terminal A region and E4 to E10 encode the common part of the receptor, including the DNA-binding domain and ligand-binding domain. Corresponding to other nuclear receptors, both 'zinc-fingers' of the DNA-binding domain are encoded separately in two exons and the ligand-binding domain is assembled from five exons.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号