首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   251篇
  免费   67篇
  318篇
  2023年   2篇
  2022年   2篇
  2021年   4篇
  2020年   2篇
  2017年   2篇
  2015年   9篇
  2014年   9篇
  2013年   13篇
  2012年   5篇
  2011年   15篇
  2010年   10篇
  2009年   12篇
  2008年   17篇
  2007年   15篇
  2006年   14篇
  2005年   2篇
  2004年   12篇
  2003年   8篇
  2002年   7篇
  2001年   7篇
  2000年   12篇
  1999年   8篇
  1998年   9篇
  1997年   10篇
  1996年   7篇
  1995年   2篇
  1994年   6篇
  1993年   4篇
  1992年   10篇
  1991年   6篇
  1990年   10篇
  1989年   4篇
  1988年   6篇
  1987年   4篇
  1983年   2篇
  1982年   5篇
  1981年   8篇
  1980年   3篇
  1979年   2篇
  1978年   2篇
  1977年   6篇
  1976年   3篇
  1975年   3篇
  1972年   1篇
  1971年   2篇
  1970年   2篇
  1968年   2篇
  1967年   2篇
  1966年   1篇
  1939年   1篇
排序方式: 共有318条查询结果,搜索用时 0 毫秒
1.
2.
3.
The effects of natural, overwintering conditions on photosystem I and photosystem II activity were examined in isolated thylakoids of periwinkle (Vinca minor L.), an endemic, cold-tolerant, herbaceous evergreen. DCMU-Insensitive photosystem I activity (ascorbate/dichlorophenolindophenol → methylviologen) exhibited a twofold increase in light-saturated rates upon exposure to low temperature and freezing stress with no effect on the apparent quantum yield of this reaction. DCMU-Sensitive photosystem II activity (H2O → dichlorlophenolindophenol) exhibited only minor fluctuations in light-saturated rates but a 50% decrease in the apparent quantum yield of this reaction upon exposure to overwintering conditions. This was correlated with a decrease in the 77°K fluorescence emission at 694 nanometers. These functional changes occurred with no detectable changes in the relative chlorophyll contents of the chlorophyll-protein complexes or the chlorophyll-thylakoid protein. The chlorophyll a/b varied less than 10% during any single growth year. Analyses of total leaf extracts indicated that all lipid classes exhibited increased levels of linoleic and linolenic acid. Neither the trans3-hexadecenoic acid level nor the ratio of oligomeric:monomeric light harvesting of photosystem II was affected by exposure to winter stress. The content of the major chloroplast lipids monogalactosyldiacylglycerol, digalactosyldiacylglycerol, phosphatidyl-diacyl-glycerol, and sulfoquinovosyldiacylglycerol exhibited minor fluctuations, whereas phosphatidylcholine and phosphatidylethanolamine content doubled on a mole percent or chlorophyll basis. We conclude that the previously reported increase in photosystem I activity during controlled, low temperature growth is observed during exposure to natural overwintering conditions. This appears to occur with minimal changes in the structure and composition of the photosynthetic apparatus of periwinkle.  相似文献   
4.
Several gene products are involved in co-translational insertion of selenocysteine by the tRNA(Sec). In addition, a stem-loop structure in the mRNAs coding for selenoproteins is essential to mediate the selection of the proper selenocysteine UGA codon. Interestingly, in eukaryotic selenoprotein mRNAs, this stem-loop structure, the selenocysteine insertion sequence (SECIS) element, resides in the 3'-untranslated region, far downstream of the UGA codon. In view of unravelling the underlying complex mechanism, we have attempted to detect RNA-binding proteins with specificity for the SECIS element. Using mobility shift assays, we could show that a protein, present in different types of mammalian cell extracts, possesses the capacity of binding the SECIS element of the selenoprotein glutathione peroxidase (GPx) mRNA. We have termed this protein SBP, for Secis Binding Protein. Competition experiments attested that the binding is highly specific and UV cross-linking indicated that the protein has an apparent molecular weight in the range of 60-65 kDa. Finally, some data suggest that the SECIS elements in the mRNAs of GPx and another selenoprotein, type I iodothyronine 5' deiodinase, recognize the same SBP protein. This constitutes the first report of the existence of a 3' UTR binding protein possibly involved in the eukaryotic selenocysteine insertion mechanism.  相似文献   
5.
During the period of COVID-19, the occurrences of mucormycosis in immunocompromised patients have increased significantly. Mucormycosis (black fungus) is a rare and rapidly progressing fungal infection associated with high mortality and morbidity in India as well as globally. The causative agents for this infection are collectively called mucoromycetes which are the members of the order Mucorales. The diagnosis of the infection needs to be performed as soon as the occurrence of clinical symptoms which differs with types of Mucorales infection. Imaging techniques magnetic resonance imaging or computed tomography scan, culture testing, and microscopy are the approaches for the diagnosis. After the diagnosis of the infection is confirmed, rapid action is needed for the treatment in the form of antifungal therapy or surgery depending upon the severity of the infection. Delaying in treatment declines the chances of survival. In antifungal therapy, there are two approaches first-line therapy (monotherapy) and combination therapy. Amphotericin B ( 1 ) and isavuconazole ( 2 ) are the drugs of choice for first-line therapy in the treatment of mucormycosis. Salvage therapy with posaconazole ( 3 ) and deferasirox ( 4 ) is another approach for patients who are not responsible for any other therapy. Adjunctive therapy is also used in the treatment of mucormycosis along with first-line therapy, which involves hyperbaric oxygen and cytokine therapy. There are some drugs like VT-1161 ( 5 ) and APX001A ( 6 ), Colistin, SCH 42427, and PC1244 that are under clinical trials. Despite all these approaches, none can be 100% successful in giving results. Therefore, new medications with favorable or little side effects are required for the treatment of mucormycosis.  相似文献   
6.
7.
A survey of isolated thylakoids from 11 different higher plant species (Spinacia oleracea L., Pisum sativum L., Vicia faba L., Brassica napus L., Vigna sinensis L., Vinca minor L., Secale cereale L., Triticum aestivum L., Triticosecale Wittn., Hordeum vulgare L., Zea mays L.) indicated that the ratio of the oligomeric:monomeric form of the light-harvesting complex II was twofold higher for the dicots (3.16 ± 0.35) than the monocots (1.64 ± 0.25) examined under identical separation procedures. Under conditions specifically designed to stabilize the oligomeric form in vitro, we show that the oligomeric form of dicot light-harvesting complex II is twice as stable to solubilization in the presence of sodium dodecyl sulfate (SDS) than that observed for monocots. This decreased stability of monocot light-harvesting complex II is associated with a twofold increase in the trienoic fatty acid level of thylakoid phosphatidylglycerol but with no significant changes in the trienoic fatty acid levels in the major galactolipids. In addition, SDS polyacrylamide gel electrophoresis and western blot analyses with monoclonal antibodies indicated that monocots exhibited greater heterogeneity in the polypeptide complements associated with subfractions of light-harvesting complex II than the dicots examined. The data indicate that the oligomeric form of the light-harvesting complex II is not the result of a simple oligomerization of a common monomeric unit. We suggest that the difference in stability of the oligomeric form of light-harvesting complex II in isolated thylakoids of monocots and dicots is probably due to a differential accessibility to SDS. The differential SDS accessibility may be due to differences in thylakoid protein-protein and/or protein-lipid interactions.  相似文献   
8.
9.
Currents passing through slowly activating vacuolar channels (SV) in isolated vacuoles from winter (Górczański) and spring (M?ochowski) varieties of rape (Brassica napus) were examined using the patch-clamp technique. Eight-week-long vernalization at 5/2 degrees C (day/night) was applied to obtain the generative stage of winter rape. SV channels of vacuoles isolated from vegetative (rosette) and generative leaves of both varieties were examined in order to investigate a possible role of these ion channels in rape flowering. Single SV channel conductance measured in a vacuole-attached configuration (natural cell sap) ranged from 60 to 83 pS. Lower values were observed in the generative leaves of both varieties. Unitary conductance measured in excised cytoplasm-out membrane patches did not differ significantly among the experimental variants, with the exception of spring generative vacuoles, where it was significantly lower. There was also no difference in SV current densities measured in the whole-vacuole configuration. Gibberellic acid (GA(3)) (2mg/l) caused lowering of macroscopic SV currents by 20%, and had no significant effect on the single channel conductance. We conclude that SV channels play a role in rape vernalization and flowering owing to their multifactor regulation abilities rather than structural changes.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号