首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   2篇
  2021年   1篇
  2018年   1篇
  2016年   2篇
  2015年   4篇
  2014年   5篇
  2013年   3篇
  2012年   3篇
  2011年   8篇
  2010年   4篇
  2009年   4篇
  2008年   1篇
  2007年   4篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   4篇
  1996年   1篇
  1993年   1篇
  1975年   1篇
排序方式: 共有53条查询结果,搜索用时 15 毫秒
1.
Summary The effect of propionate on the growth and 4-androstene-3, 17-dion (AD) yield was investigated in cultures of Mycobacterium sp. NRRL B-3805 growing in minimal medium containing -sitosterol as substrate for selective side chain cleavage. Although the addition of propionate (PA) resulted in a concentration-dependent inhibition of growth at the beginning of fermentation, cultures started to grow in the presence of 0.1% of propionic acid reached an AD concentration 38% higher than the cultures growing in the absence of propionate during two day cultivation. After three days of incubation, the AD yields in cultures containing 0, 0.1 and 0.2% propionate at the inoculation were 68, 79 and 73%, while the protein levels were 2.01, 2.11 and 2.60 mg/ml, respectively. Our data showed that the positive effect of PA on the AD production from sterols by Mycobacterium sp. NRRL B-3805 could be explained by the induction of the enzymes of the methylmalonate pathway. The activity of propionyl-CoA carboxylase was about 30% higher in the crude extracts from the induced cultures growing in minimal medium, after 20 hours of growth, than in those from the controls (18.2 and 14.1 mU/mg, respectively, using propionyl-CoA as substrate). The distribution of the acid-stable 14C-radioactivity which built into methylmalonate, succinate and fumarate indicated that methylmalonyl-CoA mutase was also induced. Our data demonstrated that elimination of the toxic propionyl-CoA released from the side chain of the sterol is likely the rate-determining step of the AD production, at least at the beginning of the process.  相似文献   
2.
Previous studies on the degenerative animal model of multiple sclerosis suggested that the copper-chelator cuprizone might directly suppress T-cell functions. Peripheral T-cell function in the cuprizone model has already been explored; therefore, in the present study, we investigated, for the first time, how cuprizone feeding affects the thymus, the organ of T-cell maturation and selection. We found that even one week of cuprizone treatment induced significant thymic atrophy, affecting the cortex over the medulla. Fluorescent microscopy and flow-cytometric analyses of thymi from cuprizone- and vehicle-treated mice indicated that eradication of the cluster of the differentiation-4 (CD4)-CD8 double-positive T-cell subset was behind the substantial cell loss. This result was confirmed with CD3-CD4-CD8 triple-staining experiments. Ultrastructurally, we observed degraded as well as enlarged mitochondria, myelin-bodies, large lipid droplets, and large lysosomes in the thymi of cuprizone-treated mice. Some of these features were similar to those in physiological and steroid-induced accelerated aging. According to our results, apoptosis was mainly of mitochondrial origin mediated by both caspase-3- and apoptosis inducing factor-mediated mechanisms. Additionally, mitogen activated protein kinase activation and increased pro-apoptotic B cell lymphoma-2 family protein expression were the major underlying processes. Our results do not indicate a functional relationship between cuprizone-induced thymus involution and the absence of inflammatory responses or the selective demyelination observed in the cuprizone model. On the other hand, due to the reversible nature of cuprizone’s deleterious effects, the cuprizone model could be valuable in studying thymus regeneration as well as remyelination processes.  相似文献   
3.
Sodium channels are one of the most intensively studied drug targets. Sodium channel inhibitors (e.g., local anesthetics, anticonvulsants, antiarrhythmics and analgesics) exert their effect by stabilizing an inactivated conformation of the channels. Besides the fast-inactivated conformation, sodium channels have several distinct slow-inactivated conformational states. Stabilization of a slow-inactivated state has been proposed to be advantageous for certain therapeutic applications. Special voltage protocols are used to evoke slow inactivation of sodium channels. It is assumed that efficacy of a drug in these protocols indicates slow-inactivated state preference. We tested this assumption in simulations using four prototypical drug inhibitory mechanisms (fast or slow-inactivated state preference, with either fast or slow binding kinetics) and a kinetic model for sodium channels. Unexpectedly, we found that efficacy in these protocols (e.g., a shift of the “steady-state slow inactivation curve”), was not a reliable indicator of slow-inactivated state preference. Slowly associating fast-inactivated state-preferring drugs were indistinguishable from slow-inactivated state-preferring drugs. On the other hand, fast- and slow-inactivated state-preferring drugs tended to preferentially affect onset and recovery, respectively. The robustness of these observations was verified: i) by performing a Monte Carlo study on the effects of randomly modifying model parameters, ii) by testing the same drugs in a fundamentally different model and iii) by an analysis of the effect of systematically changing drug-specific parameters. In patch clamp electrophysiology experiments we tested five sodium channel inhibitor drugs on native sodium channels of cultured hippocampal neurons. For lidocaine, phenytoin and carbamazepine our data indicate a preference for the fast-inactivated state, while the results for fluoxetine and desipramine are inconclusive. We suggest that conclusions based on voltage protocols that are used to detect slow-inactivated state preference are unreliable and should be re-evaluated.  相似文献   
4.
5.
BACKGROUND: Although platelet-rich plasma is relatively easy to produce by centrifugation of whole blood, yields of platelets may be variable because many of them are trapped within the erythrocyte layer. Although they can be recovered by washing these cells, it is a general rule that the number of centrifugations should be kept to a minimum to avoid activation of platelets. This work describes the rapid, one-step OptiPrep method for the isolation of highly purified platelets from human blood (buffy coat). METHODS: To provide a functionally intact and uncontaminated platelet fraction, a density gradient centrifugation was performed by using a density barrier prepared from OptiPrep. CD41 antibody staining was performed to assess the purity of the obtained platelet population by means of a FACScan flow cytometer. Platelets were identified by a morphologic gate in which events were further studied for CD41 expression. Data were analyzed by CellQuest (Becton Dickinson). RESULTS: Platelet-specific CD41 antibody staining showed that the purity of the platelet population recovered from this density barrier method was greater than 90%. The platelets showed an excellent morphologic state. CONCLUSION: The rapid, one-step OptiPrep density gradient centrifugation is a reliable method for obtaining highly purified platelets from human blood that are ready for further pharmacologic investigations.  相似文献   
6.
Lovastatin inhibited the growth of Candida albicans in a fungistatic way. Although it triggers apoptosis in a great variety of eukaryotic cells, including many tumour cell lines, lovastatin failed to provoke apoptotic events in this human pathogen. The fungistatic behaviour of this statin might arise from its negative influence on membrane fluidity. Because yeast-->pseudomycelium and hyphae morphogenetic transitions took place under exposure to lovastatin morphogenetic switch and apoptotic cell death must be regulated independently in C. albicans.  相似文献   
7.
Nitroglycerin (GTN) has been clinically used to treat angina pectoris and acute heart episodes for over 100 years. The effects of GTN have long been recognized and active research has contributed to the unraveling of numerous metabolic routes capable of converting GTN to the potent vasoactive messenger nitric oxide. Recently, the mechanism by which minute doses of GTN elicit robust pharmacological responses was revisited and eNOS activation was implicated as an important route mediating vasodilation induced by low GTN doses (1-50nM). Here, we demonstrate that at such concentrations the pharmacologic effects of nitroglycerin are largely dependent on the phosphatidylinositol 3-kinase, Akt/PKB, and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) signal transduction axis. Furthermore, we demonstrate that nitroglycerin-dependent accumulation of 3,4,5-InsP(3), probably because of inhibition of PTEN, is important for eNOS activation, conferring a mechanistic basis for GTN pharmacological action at pharmacologically relevant doses.  相似文献   
8.
Ceruloplasmin (ferroxidase) is a copper-binding protein known to promote Fe(2+) oxidation in plasma of mammals. In addition to its classical ferroxidase activity, ceruloplasmin is known to catalyze the oxidation of various substrates, such as amines and catechols. Assays based on cyclic hydroxylamine oxidation are used to quantify and detect free radicals in biological samples ex vivo and in vitro. We show here that human ceruloplasmin promotes the oxidation of the cyclic hydroxylamine 1-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine hydrochloride (CPH) and related probes in Chelex-treated phosphate buffer and rat serum. The reaction is suppressed by the metal chelators DTPA, EDTA, and desferal, whereas heparin and bathocuproine have no effect. Catalase or superoxide dismutase additions do not interfere with the CPH-oxidation yield, demonstrating that oxygen-derived free radicals are not involved in the CPH oxidation mediated by ceruloplasmin. Plasma samples immunodepleted of ceruloplasmin have lower levels of CPH oxidation, which confirms the role of ceruloplasmin (ferroxidase) as a biological oxidizing agent of cyclic hydroxylamines. In conclusion, we show that the ferroxidase activity of ceruloplasmin is a possible biological source of artifacts in the cyclic hydroxylamine-oxidation assay used for reactive oxygen species detection and quantification.  相似文献   
9.
Free radical production is implicated in the pathogenesis of diabetes mellitus, where several pathways and different mechanisms were suggested in the pathophysiology of the complications. In this study, we used electron paramagnetic resonance (EPR) spectroscopy combined with in vivo spin-trapping techniques to investigate the sources and mechanisms of free radical formation in streptozotocin-induced diabetic rats. Free radical production was directly detected in the diabetic bile, which correlated with lipid peroxidation in the liver and kidney. EPR spectra showed the trapping of a lipid-derived radical. Such radicals were demonstrated to be induced by hydroxyl radical through isotope-labeling experiments. Multiple enzymes and metabolic pathways were examined as the potential source of the hydroxyl radicals using specific inhibitors. No xanthine oxidase, cytochrome P450s, the Fenton reaction, or macrophage activation were required for the production of radical adducts. Interestingly, inducible nitric oxide synthase (iNOS) (apparently uncoupled) was identified as the major source of radical generation. The specific iNOS inhibitor 1400W as well as L-arginine pretreatment reduced the EPR signals to baseline levels, implicating peroxynitrite as the source of hydroxyl radical production. Applying immunological techniques, we localized iNOS overexpression in the liver and kidney of diabetic animals, which was closely correlated with the lipid radical generation and 4-hydroxynonenal-adducted protein formation, indicating lipid peroxidation. In addition, protein tyrosine nitration occurred in the diabetic target organs. Taken together, our studies support inducible nitric oxide synthase as a significant source of EPR-detectable reactive intermediates, which leads to lipid peroxidation and may contribute to disease progression as well.  相似文献   
10.

Background

There is only one established drug binding site on sodium channels. However, drug binding of sodium channels shows extreme promiscuity: ∼25% of investigated drugs have been found to potently inhibit sodium channels. The structural diversity of these molecules suggests that they may not share the binding site, and/or the mode of action. Our goal was to attempt classification of sodium channel inhibitors by measuring multiple properties of inhibition in electrophysiology experiments. We also aimed to investigate if different properties of inhibition correlate with specific chemical properties of the compounds.

Methodology/Principal Findings

A comparative electrophysiological study of 35 compounds, including classic sodium channel inhibitors (anticonvulsants, antiarrhythmics and local anesthetics), as well as antidepressants, antipsychotics and neuroprotective agents, was carried out using rNav1.2 expressing HEK-293 cells and the QPatch automatic patch-clamp instrument. In the multi-dimensional space defined by the eight properties of inhibition (resting and inactivated affinity, potency, reversibility, time constants of onset and offset, use-dependence and state-dependence), at least three distinct types of inhibition could be identified; these probably reflect distinct modes of action. The compounds were clustered similarly in the multi-dimensional space defined by relevant chemical properties, including measures of lipophilicity, aromaticity, molecular size, polarity and electric charge. Drugs of the same therapeutic indication typically belonged to the same type. We identified chemical properties, which were important in determining specific properties of inhibition. State-dependence correlated with lipophilicity, the ratio of the neutral form of molecules, and aromaticity: We noticed that the highly state dependent inhibitors had at least two aromatic rings, logP>4.0, and pKa<8.0.

Conclusions/Significance

The correlations of inhibition properties both with chemical properties and therapeutic profiles would not have been evident through the sole determination of IC50; therefore, recording multiple properties of inhibition may allow improved prediction of therapeutic usefulness.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号