首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   1篇
  2023年   1篇
  2019年   2篇
  2016年   1篇
  2015年   1篇
  2012年   1篇
  2011年   3篇
  2006年   4篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
排序方式: 共有17条查询结果,搜索用时 46 毫秒
1.
Lineage-specific differentiation programs are activated by epigenetic changes in chromatin structure. Melanin-producing melanocytes maintain a gene expression program ensuring appropriate enzymatic conversion of metabolites into the pigment, melanin, and transfer to surrounding cells. During neuroectodermal development, SMARCA4 (BRG1), the catalytic subunit of SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complexes, is essential for lineage specification. SMARCA4 is also required for development of multipotent neural crest precursors into melanoblasts, which differentiate into pigment-producing melanocytes. In addition to the catalytic domain, SMARCA4 and several SWI/SNF subunits contain bromodomains which are amenable to pharmacological inhibition. We investigated the effects of pharmacological inhibitors of SWI/SNF bromodomains on melanocyte differentiation. Strikingly, treatment of murine melanoblasts and human neonatal epidermal melanocytes with selected bromodomain inhibitors abrogated melanin synthesis and visible pigmentation. Using functional genomics, iBRD9, a small molecule selective for the bromodomain of BRD9 was found to repress pigmentation-specific gene expression. Depletion of BRD9 confirmed a requirement for expression of pigmentation genes in the differentiation program from melanoblasts into pigmented melanocytes and in melanoma cells. Chromatin immunoprecipitation assays showed that iBRD9 disrupts the occupancy of BRD9 and the catalytic subunit SMARCA4 at melanocyte-specific loci. These data indicate that BRD9 promotes melanocyte pigmentation whereas pharmacological inhibition of BRD9 is repressive.  相似文献   
2.
3.
The activity of Src kinases appears to play a role in both assembly and disassembly of tight junction. However, the role of a specific isoform of Src kinase in regulation of tight junction is not known. In the present study the role of c-Src in regulation of epithelial tight junction was investigated in Caco-2 cell monolayers. Oxidative stress (xanthine oxidase + xanthine) induced an activation and membrane translocation of c-Src. The oxidative stress-induced decrease in transepithelial electrical resistance, increase in inulin permeability, and redistribution of occludin and ZO-1 from the intercellular junctions were prevented by PP2. The rates of oxidative stress-induced activation of c-Src, tyrosine phosphorylation of ZO-1 and beta-catenin, decrease in resistance, increase in permeability to inulin, and redistribution of occludin and ZO-1 were significantly greater in cells transfected with wild type c-Src, whereas it was low in cells transfected with kinase-inactive c-SrcK297R mutant, when compared with those in empty vector-transfected cells. The rates of recovery of resistance, increase in barrier to inulin, and reorganization of occludin and ZO-1 into the intercellular junctions during the calcium-induced reassembly of tight junction were much greater in Caco-2 cells transfected with c-SrcK297R as compared with those in cells transfected with empty vector or wild type c-Src. These results show that the dominant-negative expression of kinase-inactive c-Src delays the oxidative stress-induced disruption of tight junction and accelerates calcium-induced assembly of tight junction in Caco-2 cells and demonstrate that oxidative stress-induced disruption of tight junction is mediated by the activation of c-Src.  相似文献   
4.
Tumor necrosis factor- (TNF-) causes oxidative stress and apoptosis in a variety of cell types. Heme oxygenase (HO) degrades heme to bilirubin, an antioxidant, and carbon monoxide (CO), a cell cycle modulator, and a vasodilator. Newborn pig cerebral microvascular endothelial cells (CMVEC) highly express constitutive HO-2. We investigated the role of HO-2 in protection against TNF--induced apoptosis in cerebral vascular endothelium. In CMVEC from mice and newborn pigs, 15 ng/ml TNF- alone, or with 10 µg/ml cycloheximide (CHX) caused apoptosis detected by nuclear translocation of p65 NF-B, caspase-3 activation, DNA fragmentation, cell-cell contact destabilization, and cell detachment. TNF- did not induce HO-1 expression in CMVEC. CMVEC from HO-2 knockout mice showed greater sensitivity to apoptosis caused by serum deprivation and TNF- than did wild-type mice. TNF- increased reactive oxygen species generation, including hydrogen peroxide and superoxide radicals, as detected by dihydrorhodamine-123 and dihydroethidium. The TNF- response was inhibited by superoxide dismutase and catalase suggesting apoptosis is oxidative stress related. Inhibition of endogenous HO-2 in newborn pig CMVEC increased oxidative stress and exaggerated apoptosis caused by serum deprivation and TNF-. In HO-1-overexpressing CMVEC (HO-1 selective induction by cobalt portophyrin), TNF- did not cause apoptosis. A CO-releasing compound, CORM-A1, and bilirubin blocked TNF--induced reactive oxygen species accumulation and apoptosis consistent with the antioxidant and antiapoptotic roles of the end products of HO activity. We conclude that HO-2 is critical for protection of cerebrovascular endothelium against apoptotic changes induced by oxidative stress and cytokine-mediated inflammation. carbon monoxide; bilirubin; vascular injury; reactive oxygen species; heme oxygenase; cycloheximide  相似文献   
5.
The polyamines are important molecules governing cell proliferation, survival and apoptosis. Consistent with their elevated levels in cancer, they have been shown to mediate tumor promotion and progression. Cellular and tissue polyamine pools and metabolic flux are regulated by a number of processes. Neoplastic transformation is accompanied with an increase in biosynthesis, decreased catabolism and elevated uptake of exogenous polyamines. Effective strategies for cancer chemoprevention and chemotherapy, targeting the polyamine metabolic pathway will likely require a combination of agents acting at multiple sites of this pathway. Genetic variability affecting expression of the ornithine decarboxylase gene suggests an association between ODC expression and cancer risk, and prediction of response to treatment in certain epithelial cancers.  相似文献   
6.
7.
The solid‐state conformations of two αγ hybrid peptides Boc‐[Aib‐γ4(R)Ile]4‐OMe 1 and Boc‐[Aib‐γ4(R)Ile]5‐OMe 2 are described. Peptides 1 and 2 adopt C12‐helical conformations in crystals. The structure of octapeptide 1 is stabilized by six intramolecular 4 → 1 hydrogen bonds, forming 12 atom C12 motifs. The structure of peptide 2 reveals the formation of eight successive C12 hydrogen‐bonded turns. Average backbone dihedral angles for αγ C12 helices are peptide 1 , Aib; φ (°) = ?57.2 ± 0.8, ψ (°) = ?44.5 ± 4.7; γ4(R)Ile; φ (°) = ?127.3 ± 7.3, θ1 (°) = 58.5 ± 12.1, θ2 (°) = 67.6 ± 10.1, ψ (°) = ?126.2 ± 16.1; peptide 2 , Aib; φ (°) = ?58.8 ± 5.1, ψ (°) = ?40.3 ± 5.5; ψ4(R)Ile; φ (°) = ?123.9 ± 2.7, θ1 (°) = 53.3 θ 4.9, θ 2 (°) = 61.2 ± 1.6, ψ (°) = ?121.8 ± 5.1. The tendency of γ4‐substituted residues to adopt gauche–gauche conformations about the Cα–Cβ and Cβ–Cγ bonds facilitates helical folding. The αγ C12 helix is a backbone expanded analog of α peptide 310 helix. The hydrogen bond parameters for α peptide 310 and α‐helices are compared with those for αγ hybrid C12 helix. Copyright © 2016 European Peptide Society and John Wiley & Sons.  相似文献   
8.
Hydrogen sulfide (H2S) is a gaseous signaling molecule that appears to be involved in numerous biological processes, including regulation of blood pressure and vascular tone. The present study is designed to address the hypothesis that H2S is a functionally significant, endogenous dilator in the newborn cerebrovascular circulation. In vivo experiments were conducted using newborn pigs with surgically implanted, closed, cranial windows. Topical application of H2S concentration-dependently (10(-6) to 2×10(-4) M) dilated pial arterioles. This dilation was blocked by glibenclamide (10(-6) M). L-cysteine, the substrate of the H2S-producing enzymes cystathionine γ-lyase (CSE) and cystathionine β-synthase (CBS), also dilated pial arterioles. The dilation to L-cysteine was blocked by the CSE inhibitor d,l-propargylglycine (PPG, 10 mM) but was unaffected by the CBS inhibitor amino-oxyacetate (AOA, 1 mM). Western blots detected CSE, but not CBS, in cerebral microvessels, whereas CBS is detected in brain parenchyma. Immunohistological CSE expression is predominantly vascular while CBS is expressed mainly in neurons and astrocytes. L-cysteine (5 mM) increased H2S concentration in cerebrospinal fluid (CSF), measured by GC-MS, from 561±205 to 2,783±818 nM before but not during treatment with PPG (1,030±70 to 622±78 nM). Dilation to hypercapnia was inhibited by PPG but not AOA. Hypercapnia increased CSF H2S concentration from 763±243 to 4,337±1789 nM before but not during PPG treatment (357±178 vs. 425±217 nM). These data show that H2S is a dilator of the newborn cerebral circulation and that endogenous CSE can produce sufficient H2S to decrease vascular tone. H2S appears to be a physiologically significant dilator in the cerebral circulation.  相似文献   
9.
We investigated the role of reactive oxygen species (ROS) in promoting cell survival during oxidative stress induced by the inflammatory mediator tumor necrosis factor-α (TNF-α) in cerebral microvascular endothelial cells (CMVEC) from newborn piglets. Nox4 is the major isoform of NADPH oxidase responsible for TNF-α-induced oxidative stress and apoptosis in CMVEC. We present novel data that Nox4 NADPH oxidase-derived ROS also initiate a cell survival mechanism by increasing production of a gaseous antioxidant mediator carbon monoxide (CO) by constitutive heme oxygenase-2 (HO-2). TNF-α rapidly enhanced endogenous CO production in a superoxide- and NADPH oxidase-dependent manner in CMVEC with innate, but not with small interfering RNA (siRNA)-downregulated Nox4 activity. CORM-A1, a CO-releasing compound, inhibited Nox4-mediated ROS production and enhanced cell survival in TNF-α-challenged CMVEC. The ROS-induced CO-mediated survival mechanism requires functional interactions between the protein kinase B/Akt and extracellular signal-related kinase (ERK)/p38 MAPK signaling pathways activated by TNF-α. In Akt siRNA-transfected CMVEC and in cells with pharmacologically inhibited Akt, Erk1/2, and p38 mitogen-activated protein kinase (MAPK) activities, CORM-A1 was no longer capable of blocking Nox4 activation and apoptosis caused by TNF-α. Overall, Nox4 NADPH oxidase-derived ROS initiate both death and survival pathways in TNF-α-challenged CMVEC. The ROS-dependent cell survival pathway is mediated by an endogenous antioxidant CO, which inhibits Nox4 activation via a mechanism that includes Akt, ERK1/2, and p38 MAPK signaling pathways. The ability of CO to inhibit TNF-α-induced ERK1/2 and p38 MAPK activities in an Akt-dependent manner appears to be the key element in ROS-dependent survival of endothelial cells during TNF-α-mediated brain inflammatory disease.  相似文献   
10.
In cerebral circulation, epileptic seizures associated with excessive release of the excitatory neurotransmitter glutamate cause endothelial injury. Heme oxygenase (HO), which metabolizes heme to a vasodilator, carbon monoxide (CO), and antioxidants, biliverdin/bilirubin, is highly expressed in cerebral microvessels as a constitutive isoform, HO-2, whereas the inducible form, HO-1, is not detectable. Using cerebral vascular endothelial cells from newborn pigs and HO-2-knockout mice, we addressed the hypotheses that 1) glutamate induces oxidative stress-related endothelial death by apoptosis, and 2) HO-1 and HO-2 are protective against glutamate cytotoxicity. In cerebral endothelial cells, glutamate (0.1–2.0 mM) increased formation of reactive oxygen species, including superoxide radicals, and induced major keystone events of apoptosis, such as NF-B nuclear translocation, caspase-3 activation, DNA fragmentation, and cell detachment. Glutamate-induced apoptosis was greatly exacerbated in HO-2 gene-deleted murine cerebrovascular endothelial cells and in porcine cells with pharmacologically inhibited HO-2 activity. Glutamate toxicity was prevented by superoxide dismutase, suggesting apoptotic changes are oxidative stress related. When HO-1 was pharmacologically upregulated by cobalt protoporphyrin, apoptotic effects of glutamate in cerebral endothelial cells were completely prevented. Glutamate-induced reactive oxygen species production and apoptosis were blocked by a CO-releasing compound, CORM-A1 (50 µM), and by bilirubin (1 µM), consistent with the antioxidant and cytoprotective roles of the end products of HO activity. We conclude that both HO-1 and HO-2 have anti-apoptotic effects against oxidative stress-related glutamate toxicity in cerebral vascular endothelium. Although HO-1, when induced, provides powerful protection, HO-2 is an essential endogenous anti-apoptotic factor against glutamate toxicity in the cerebral vascular endothelium. endothelium; carbon monoxide; bilirubin; injury; reactive oxygen species; heme oxygenase  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号