首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   12篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   3篇
  2016年   3篇
  2015年   11篇
  2014年   9篇
  2013年   13篇
  2012年   9篇
  2011年   10篇
  2010年   6篇
  2009年   8篇
  2008年   12篇
  2007年   12篇
  2006年   5篇
  2005年   3篇
  2004年   4篇
  2003年   3篇
  2002年   5篇
  2001年   3篇
  2000年   2篇
  1999年   5篇
  1998年   1篇
  1997年   1篇
排序方式: 共有138条查询结果,搜索用时 31 毫秒
1.
2.
3.
Murine ecotropic leukemia viruses use a common receptor for entry into host cells; however, the site of virus fusion appears to differ with the host cell. Entry in mouse NIH 3T3 fibroblasts is by endocytosis, whereas entry in rat XC sarcoma cells is by surface fusion. We report here the identification of a step common to both entry pathways, as well as of a step unique to the endocytic pathway. Recent demonstration of the clustering of the virus receptor on rat cells suggested a possible interaction of the receptor with the cellular cytoskeleton (M. H. Woodard, W. A. Dunn, R. O. Laine, M. Malandro, R. McMahon, O. Simell, E. R. Block, and M. S. Kilberg, Am. J. Physiol. 266:E817-E824, 1994). We tested the hypothesis that such an interaction might influence receptor function. We found that entry into NIH 3T3 and XC cells was greatly diminished by the disruption of the actin network before but not shortly after virus internalization, suggesting the actin network plays a critical role in an early step common to both entry pathways. Disruption of microtubules before and shortly after virus internalization markedly reduced entry in NIH 3T3 cells, while entry into XC cells remained efficient. These data suggest that intact microtubules are required in a postpenetration step unique to efficient virus entry via endocytosis. The physiological function of the receptor was not affected by disruption of either the actin network or the microtubules, as the uptake of cationic amino acids in NIH 3T3 and XC cells was comparable to that in control cells even when the cytoskeleton remained disrupted for as long as 3 h.  相似文献   
4.
The aim of the present study is to investigate the chemopreventive effects of the prepared naringenin-loaded nanoparticles (NARNPs) relative to efficacy of free naringenin (NAR) in modifying the functional, structural, and compositional changes at the molecular level during 7, 12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis by Fourier transform infrared (FT-IR) spectroscopy. The results revealed that a significant increase in the amount of proteins and nucleic acid contents and a decrease in the amount of lipids and glycogen contents are observed in DMBA-induced tumor tissues. In addition, in tumor tissues a decrease in lipid order and a significant increase in membrane dynamics were noticed. Further, the composition and secondary structure of proteins were found to be altered, which indicates some important structural alterations in the existing proteins and/or the expression of new types of proteins occurring under the tumor transformation. Furthermore, oral administration of free NAR and NARNPs significantly increased lipids and their order as well as increased the glycogen contents and decreased the levels of proteins and nucleic acid contents. On a comparative basis, NARNPs were found to have a more potent antitumor effect than free NAR in completely preventing the formation of squamous cell carcinoma and in improving the biochemical constituents to a normal range in DMBA-induced HBP carcinogenesis. The present study further shows a great potential of FT-IR spectroscopy as a complimentary tool for the screening of various anticancer drugs and follow-up, which may allow faster response to critical problems arising during treatment.  相似文献   
5.
6.
The relationship between hemic neoplasia, a blood cell disorder in bivalve molluscs, and chemical contaminants was evaluated in the common mussel (Mytilus edulis complex). Hemic neoplasia (HN) is endemic to mussel populations in Puget Sound. The prevalence of hemic neoplasia ranged from 0 to 30% in mussels from nine sites in Puget Sound, Washington. Organic chemical contamination in sediment from these sites range from 0.1 to 64.0 ppm of polycyclic aromatic hydrocarbons (PAHs) and 0.07 to 0.50 ppm chlorinated hydrocarbons. No relationship between the body burden of environmental contaminants and the prevalence of HN in mussels was identified. To evaluate the short-term ability of chemical contaminants to induce HN in mussels, mussels, from a site where mussels were previously determined to be HN free, were fed microencapsulated PAHs (composed of a mixture of phenanthrene, flouranthene, and benzo[a]pyrene) or PCBs (Aroclor 1254) and the prevalence of HN was assessed after 30 days of exposure. Although an apparent increase in HN prevalence (20 to 30%) was observed in all treatments groups except the untreated controls, no significant difference in the prevalence of HN was observed between the control group of mussels fed corn oil (vehicle) and mussels fed either PAHs or PCBs in corn oil. A long-term (180-day) exposure study was conducted to evaluate the influence of PAHs or PCBs in modulating the prevalence of HN in a mussel population already exhibiting a moderate HN prevalence. Mussels, from a site where mussels were previously determined to exhibit a background prevalence of HN, fed microencapsulated PAHs, PCBs, and corn oil (vehicle) over a long time period (180 days), revealed an apparent increased prevalence of HN (30 to 40%) above the low levels (20%) initially present. However, no significant difference in the prevalence of HN was observed between the control group of mussels fed corn oil (vehicle) and mussels fed either PAHs or PCBs in corn oil. Although chemical contaminants have been proposed as a modulating factor in the development and promotion of HN in bivalve molluscs from environmentally stressed and degraded habitats, we find no evidence that chemical contaminants induce or promote the development of HN in the mussel M. edulis complex.  相似文献   
7.
De SK  Devadas K  Notkins AL 《Journal of virology》2002,76(22):11710-11714
Homozygous human immunodeficiency virus type 1 (HIV-1)-transgenic mice (Tg26) appear normal at birth but die within 3 to 4 weeks. The skin of these animals shows diffuse scaling and high-level expression of both HIV-1 mRNA and gp120. Previous experiments showed that treatment with human chorionic gonadatropin (hCG) prevented death and the expression of HIV-1 mRNA and gp120. The present experiments were initiated to study the role of tumor necrosis factor alpha (TNF-alpha) in HIV-1-induced pathology. Examination of the sera of Tg26 mice revealed a 50-fold increase in TNF-alpha levels compared to those in nontransgenic mice. Treatment with antibody to TNF-alpha prevented death, resulted in near normal growth, and produced a marked decrease in skin lesions and a profound reduction in the expression of HIV-1 mRNA and gp120. Both TNF-alpha antibody and hCG reduced TNF-alpha levels in sera by approximately 75%. We conclude that TNF-alpha contributes in a major way to HIV-1-induced pathology in transgenic mice and that both hCG and antibody to TNF-alpha prevent the development of pathology by suppressing the level of TNF-alpha.  相似文献   
8.
Krishnakumar SS  Panda D 《Biochemistry》2002,41(23):7443-7452
Prodan (6-propionyl-2-(dimethylamino)-naphthalene), a competitive inhibitor of warfarin binding to human serum albumin (HSA) at drug site I, was used to determine the inter- and intradomain distances of HSA. The fluorescence resonance energy transfer (FRET) distances between prodan and Trp-214, prodan and 7-(diethyl amino)-4-methylcoumarin 3-maleimide (CM)-modified Cys-34, and Trp-214 and CM-Cys-34 were determined to be 25.5 +/- 0.5 A, 33.1 +/- 0.8 A, and 32.4 +/- 1 A, respectively. FRET analysis showed that low concentration of palmitic acid (5 microM) increased the interdomain distance between the Trp-214 in domain II and CM-Cys-34 in domain I by approximately 5 A without perturbing the secondary structure of HSA and the immediate environment of Trp-214. Palmitic acid (5 microM) increased the prodan fluorescence by increasing the quantum yield of bound prodan without altering the tryptophan environment. However, palmitic acid (>10 microM) decreased the prodan fluorescence and increased the tryptophan fluorescence. Our results indicate that the high affinity palmitic acid binding site is located at the interface of domains I and II. On the basis of our measurements, a schematic model representing the drug site-1, Trp-214, and Cys-34 along with the palmitic acid sites has been constructed. In addition, prodan fluorescence, FRET, and ligand binding were used to monitor guanidine hydrochloride-induced denaturation of HSA. An analysis of the equilibrium unfolding data suggests that HSA undergoes a two-state unfolding transition with no detectable intermediate. However, kinetic analysis using multiple probes and thermal denaturation studies showed that the unfolding of the prodan site in HSA preceded the unfolding of tryptophan environment. In addition, the separation of domain I and II occurred before the global unfolding of the protein. The data support the idea that HSA loses its structure incrementally during its unfolding.  相似文献   
9.
10.
The minimum hydrophobic length necessary to form a transmembrane (TM) helix in membranes was investigated using model membrane-inserted hydrophobic helices. The fluorescence of a Trp at the center of the sequence and its sensitivity to quenching were used to ascertain helix position within the membrane. Peptides with hydrophobic cores composed of poly(Leu) were compared to sequences containing a poly 1:1 Leu:Ala core (which have a hydrophobicity typical of natural TM helices). Studies varying bilayer width revealed that the poly(Leu) core peptides predominately formed a TM state when the bilayer width exceeded hydrophobic sequence length by (i.e. when negative mismatch was) up to ∼ 11-12 Å (e.g. the case of a 11-12 residue hydrophobic sequence in bilayers with a biologically relevant width, i.e. dioleoylphosphatidylcholine (DOPC) bilayers), while poly(LeuAla) core peptides formed predominantly TM state with negative mismatch of up to 9 Å (a 13 residue hydrophobic sequence in DOPC bilayers). This indicates that minimum length necessary to form a predominating amount of a TM state (minimum TM length) is only modestly hydrophobicity-dependent for the sequences studied here, and a formula that defines the minimum TM length as a function of hydrophobicity for moderately-to-highly hydrophobic sequences was derived. The minimum length able to form a stable TM helix for alternating LeuAla sequences, and that for sequences with a Leu block followed by an Ala block, was similar, suggesting that a hydrophobicity gradient along the sequence may not be an important factor in TM stability. TM stability was also similar for sequences flanked by different charged ionizable residues (Lys, His, Asp). However, ionizable flanking residues destabilized the TM configuration much more when charged than when uncharged. The ability of short hydrophobic sequences to form TM helices in membranes in the presence of substantial negative mismatch implies that lipid bilayers have a considerable ability to adjust to negative mismatch, and that short TM helices may be more common than generally believed. Factors that modulate the ability of bilayers to adjust to mismatch may strongly affect the configuration of short hydrophobic helices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号