首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   2篇
  2023年   2篇
  2022年   1篇
  2021年   3篇
  2020年   3篇
  2019年   2篇
  2017年   1篇
  2015年   5篇
  2014年   3篇
  2013年   2篇
  2012年   4篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2004年   1篇
排序方式: 共有33条查询结果,搜索用时 359 毫秒
1.
2.
Lewington-Pearce  Leah  Parker  Ben  Narwani  Anita  Nielsen  Jens M.  Kratina  Pavel 《Oecologia》2020,192(2):515-527
Oecologia - Biodiversity loss and climate warming are occurring in concert, with potentially profound impacts on ecosystem functioning. We currently know very little about the combined effects of...  相似文献   
3.
The unprecedented loss of biological diversity has negative impacts on ecosystems and the associated benefits which they provide to humans. Bromeliads have high diversity throughout the Neotropics, but they have been negatively affected by habitat loss and fragmentation, climate change, invasive species, and commercialization for ornamental purpose. These plants provide direct benefits to the human society, and they also form microecosystems in which accumulated water and nutrients support the communities of aquatic and terrestrial species, thus maintaining local diversity. We performed a systematic review of the contribution of bromeliads to ecosystem services across their native geographical distribution. We showed that bromeliads provide a range of ecosystem services such as maintenance of biodiversity, community structure, nutrient cycling, and the provisioning of food and water. Moreover, bromeliads can regulate the spread of diseases, and water and carbon cycling, and they have the potential to become important sources of chemical and pharmaceutical products. The majority of this research was performed in Brazil, but future research from other Neotropical countries with a high diversity of bromeliads would fill the current knowledge gaps and increase the generality of these findings. This systematic review identified that future research should focus on provisioning, regulating, and cultural services that have been currently overlooked. This would enhance our understanding of how bromeliad diversity contributes to human welfare, and the negative consequences that loss of bromeliad plants can have on communities of other species and the healthy functioning of the entire ecosystems.  相似文献   
4.
Resource competition theory is a conceptual framework that provides mechanistic insights into competition and community assembly of species with different resource requirements. However, there has been little exploration of how resource requirements depend on other environmental factors, including temperature. Changes in resource requirements as influenced by environmental temperature would imply that climate warming can alter the outcomes of competition and community assembly. We experimentally demonstrate that environmental temperature alters the minimum light and nitrogen requirements – as well as other growth parameters – of six widespread phytoplankton species from distinct taxonomic groups. We found that species require the most nitrogen at the highest temperatures while light requirements tend to be lowest at intermediate temperatures, although there are substantial interspecific differences in the exact shape of this relationship. We also experimentally parameterize two competition models, which we use to illustrate how temperature, through its effects on species’ traits, alters competitive hierarchies in multispecies assemblages, determining community dynamics. Developing a mechanistic understanding of how temperature influences the ability to compete for limiting resources is a critical step towards improving forecasts of community dynamics under climate warming.  相似文献   
5.
Direct IAP binding protein with low pI/second mitochondrial activator of caspases, HtrA2/Omi and GstPT/eRF3 are mammalian proteins that bind via N-terminal inhibitor of apoptosis protein (IAP) binding motifs (IBMs) to the baculoviral IAP repeat (BIR) domains of IAPs. These interactions can prevent IAPs from inhibiting caspases, or displace active caspases, thereby promoting cell death. We have identified several additional potential IAP antagonists, including glutamate dehydrogenase (GdH), Nipsnap 3 and 4, CLPX, leucine-rich pentatricopeptide repeat motif-containing protein and 3-hydroxyisobutyrate dehydrogenase. All are mitochondrial proteins from which N-terminal import sequences are removed generating N-terminal IBMs. Whereas most of these proteins have alanine at the N-terminal position, as observed for previously described antagonists, GdH has an N-terminal serine residue that is essential for X-linked IAP (XIAP) interaction. These newly described IAP binding proteins interact with XIAP mainly via BIR2, with binding eliminated or significantly reduced by a single point mutation (D214S) within this domain. Through this interaction, many are able to antagonise XIAP inhibition of caspase 3 in vitro.  相似文献   
6.
Grim is a Drosophila inhibitor of apoptosis (IAP) antagonist that directly interferes with inhibition of caspases by IAPs. Expression of Grim, or removal of DIAP1, is sufficient to activate apoptosis in fly cells. Transient expression of Grim in mammalian cells induces apoptosis, arguing for the conservation of apoptotic pathways, but cytoplasmic expression of the mammalian IAP antagonist Diablo/smac does not. To understand why, we compared Grim and Diablo. Although they have the same IAP binding specificity, only Grim promoted XIAP ubiquitination and degradation. Grim also synergized with XIAP to promote an increase in total cellular ubiquitination, whereas Diablo antagonized this activity. Surprisingly, Grim-induced ubiquitination of XIAP did not require the IAP RING finger. Analysis of a Grim mutant that promoted XIAP degradation, but was not cytotoxic, suggests that Grim killing in transient assays is due to a combination of IAP depletion, blocking of IAP-mediated caspase inhibition, and at least one other unidentified function. Unlike transiently transfected cells, inducible mammalian cell lines can sustain continuous expression of Grim and selective degradation of XIAP without undergoing apoptosis, demonstrating that down-regulation and antagonism of IAPs is not sufficient to cause apoptosis of mammalian cells.  相似文献   
7.
Realistic functional responses are required for accurate model predictions at the community level. However, controversy remains regarding which types of dependencies need to be included in functional response models. Several studies have shown an effect of very high predator densities on per capita predation rates, but it is unclear whether this predator dependence is also important at low predator densities. We fit integrated functional response models to predation data from 4-h experiments where we had varied both predator and prey densities. Using an information theoretic approach we show that the best-fit model includes moderate predator dependence, which was equally strong even at low predator densities. The best fits of Beddington–DeAngelis and Arditi–Akçakaya functional responses were closely followed by the fit of the Arditi–Ginzburg model. A Holling type III functional response did not describe the data well. In addition, independent behavioral observations revealed high encounter rates between predators. We quantified the number of encounters between predators and the time the focal predator spent interacting with other individuals per encounter. This time “wasted” on conspecifics reduced the total time available for foraging and may therefore account for lower predation rates at higher predator densities. Our findings imply that ecological theory needs to take realistic levels of predator dependence into account.  相似文献   
8.
Climate change-related heatwaves are major threats to biodiversity and ecosystem functioning. However, our current understanding of the mechanisms governing community resistance to and recovery from extreme temperature events is still rudimentary. The spatial insurance hypothesis postulates that diverse regional species pools can buffer ecosystem functioning against local disturbances through the immigration of better-adapted taxa. Yet, experimental evidence for such predictions from multi-trophic communities and pulse-type disturbances, like heatwaves, is largely missing. We performed an experimental mesocosm study to test whether species dispersal from natural lakes prior to a simulated heatwave could increase the resistance and recovery of plankton communities. As the buffering effect of dispersal may differ among trophic groups, we independently manipulated the dispersal of organisms from lower (phytoplankton) and higher (zooplankton) trophic levels. The experimental heatwave suppressed total community biomass by having a strong negative effect on zooplankton biomass, probably due to a heat-induced increase in metabolic costs, resulting in weaker top-down control on phytoplankton. While zooplankton dispersal did not alleviate the negative heatwave effects on zooplankton biomass, phytoplankton dispersal enhanced biomass recovery at the level of primary producers, providing partial evidence for spatial insurance. The differential responses to dispersal may be linked to the much larger regional species pool of phytoplankton than of zooplankton. Our results suggest high recovery capacity of community biomass independent of dispersal. However, community composition and trophic structure remained altered due to the heatwave, implying longer-lasting changes in ecosystem functioning.  相似文献   
9.

Aim

Emerging aquatic insects link aquatic and terrestrial ecosystems across the Earth. Their diversity, abundance and functional importance means their emergence is an important phenological event. Nevertheless, aquatic insect emergence is understudied at a global scale compared to other phenological events, despite changing phenology being one of the most significant ecological responses to climate change. Here, we quantitatively describe the global patterns, and key proposed drivers, of seasonal aquatic insect emergence, to further understand how these patterns might change in the future.

Location

Global.

Time Period

1950–2018.

Major Taxa Studied

Emerging aquatic insects.

Methods

We extracted monthly emergence data from 86 studies across 163 sites to construct 1053 annual emergence curves. We parameterized the curves using two complementary metrics of seasonality, which were modelled against geographical and climatic variables to determine the direct and indirect relationships between them.

Results

We found clear global trends in aquatic insect emergence patterns across latitude and underlying climates. Between-month variation and temporal restriction of emergence increased from the equator to the poles, going from small, aseasonal fluctuations in the warm, thermally stable tropics to large, seasonal peaks at cooler, thermally unstable higher latitudes. While emergence trends were associated with gradients of precipitation, temperature was the dominant climatic driver of the latitudinal trend.

Main Conclusions

These findings suggest that with climate warming, aquatic insects will emerge over longer periods, diluted in abundances and displaying less seasonal emergence patterns with smaller between-month fluctuations. This may result in disruption of ecosystem functions seasonally dependent on aquatic insects, such as riparian predation, pollination and disease transmission. The cross-ecosystem life cycle of aquatic insects means changes to their seasonal patterns of emergence will have impacts in both aquatic and terrestrial ecosystems.  相似文献   
10.
Climate warming has been linked with changes in the spatiotemporal distribution of species and the body size structure of ecological communities. Body size is a master trait underlying a host of physiological, ecological and evolutionary processes. However, the relative importance of environmental drivers and life history strategies on community body size structure across large spatial and temporal scales is poorly understood. We used detailed data of 83 copepod species, monitored over a 57-year period across the North Atlantic, to test how sea surface temperature, thermal and day length seasonality relate to observed latitudinal-size clines of the zooplankton community. The genus Calanus includes dominant taxa in the North Atlantic that overwinter at ocean depth. Thus we compared the copepod community size structure with and without Calanus species, to partition the influence of this life history strategy. The mean community body size of copepods was positively associated with latitude and negatively associated with temperature, suggesting that these communities follow Bergmann's rule. Including Calanus species strengthens these relationships due to their larger than average body sizes and high seasonal abundances, indicating that the latitudinal-size cline may be adaptive. We suggest that seasonal food availability prevents high abundance of smaller-sized copepods at higher latitudes, and that active vertical migration of dominant pelagic species can increase their survival rate over the resource-poor seasons. These findings improve our understanding of the impacts that climate warming has on ecological communities, with potential consequences for trophic interactions and biogeochemical processes that are well known to be size dependent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号