首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   1篇
  9篇
  2020年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2009年   1篇
  2002年   1篇
  1999年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Variation in sexual dimorphism (SD) is particularly marked in meat-type chickens. This paper investigates the genetic basis of SD in an important economic trait, i.e. body weight (BW) at 35 days of age, in broilers by applying quantitative genetic analysis. A large dataset comprising 203,323 BW records of a commercial line of broiler chicken was used. First, a bivariate approach was employed treating BW as a sex-specific trait. During this approach, seven bivariate models were applied and variances due to direct additive genetic, maternal genetic and maternal environmental effects were estimated via the restricted maximum likelihood method. The best-fitting model included direct additive genetic, maternal genetic and maternal environmental effects with a direct–maternal genetic covariance. Differences between male and female direct heritabilities were non-significant (0.28 vs. 0.29 for males and females, respectively), implying no need for sex-specific selection strategies. The direct–maternal genetic correlation was more strongly negative in males than in females (?0.72 vs. ?0.56), implying a more profound antagonism between direct additive and maternal genetic effects in this particular gender. The direct genetic correlation of BW between the two sexes was as high as 0.91, i.e. only slightly lower than unity. Second, variance components and genetic parameters of two measures of SD, i.e. the weight difference (Δ) and the weight ratio (R), between the genders were estimated. Direct heritabilities for both measures were significantly different to 0 but of low magnitude (0.04). Apart from the additive–maternal covariance, no other random effects were found to be of importance for Δ and R. The results of the present study suggest that only minimal selection responses due to the selection of Δ and/or R and a small capacity for amplifying or reducing the BW differences between the sexes are to be expected in this specific population. Furthermore, selection pressure on BW is expected to amplify SD.  相似文献   
2.
Sahu  K. K.  Doshi  A.  Mishra  A. K.  Kranis  M. 《Netherlands heart journal》2020,28(3):171-171
Netherlands Heart Journal -  相似文献   
3.

Background

Despite the dramatic reduction in the cost of high-density genotyping that has occurred over the last decade, it remains one of the limiting factors for obtaining the large datasets required for genomic studies of disease in the horse. In this study, we investigated the potential for low-density genotyping and subsequent imputation to address this problem.

Results

Using the haplotype phasing and imputation program, BEAGLE, it is possible to impute genotypes from low- to high-density (50K) in the Thoroughbred horse with reasonable to high accuracy. Analysis of the sources of variation in imputation accuracy revealed dependence both on the minor allele frequency of the single nucleotide polymorphisms (SNPs) being imputed and on the underlying linkage disequilibrium structure. Whereas equidistant spacing of the SNPs on the low-density panel worked well, optimising SNP selection to increase their minor allele frequency was advantageous, even when the panel was subsequently used in a population of different geographical origin. Replacing base pair position with linkage disequilibrium map distance reduced the variation in imputation accuracy across SNPs. Whereas a 1K SNP panel was generally sufficient to ensure that more than 80% of genotypes were correctly imputed, other studies suggest that a 2K to 3K panel is more efficient to minimize the subsequent loss of accuracy in genomic prediction analyses. The relationship between accuracy and genotyping costs for the different low-density panels, suggests that a 2K SNP panel would represent good value for money.

Conclusions

Low-density genotyping with a 2K SNP panel followed by imputation provides a compromise between cost and accuracy that could promote more widespread genotyping, and hence the use of genomic information in horses. In addition to offering a low cost alternative to high-density genotyping, imputation provides a means to combine datasets from different genotyping platforms, which is becoming necessary since researchers are starting to use the recently developed equine 70K SNP chip. However, more work is needed to evaluate the impact of between-breed differences on imputation accuracy.  相似文献   
4.
Bridged-tricyclic cyanoguanidines 1 were found to be active as insecticides. The preparation and structure-activity relationships of oxacyclic (X=O) and carbocyclic (X=CH(2)) analogues of 1 is described. Compounds 1 were found to inhibit acetylcholinesterase with IC(50) values comparable to the organophosphate Paraoxon. Unlike organophosphates, cyanoguanidines 1 were shown to reversibly bind acetylcholinesterase. This mode of action is shared by the structurally-related natural product Huperzine A.  相似文献   
5.
Accuracy of prediction of yet-to-be observed phenotypes for food conversion rate (FCR) in broilers was studied in a genome-assisted selection context. Data consisted of FCR measured on the progeny of 394 sires with SNP information. A Bayesian regression model (Bayes A) and a semi-parametric approach (Reproducing kernel Hilbert Spaces regression, RKHS) using all available SNPs (p = 3481) were compared with a standard linear model in which future performance was predicted using pedigree indexes in the absence of genomic data. The RKHS regression was also tested on several sets of pre-selected SNPs (p = 400) using alternative measures of the information gain provided by the SNPs. All analyses were performed using 333 genotyped sires as training set, and predictions were made on 61 birds as testing set, which were sons of sires in the training set. Accuracy of prediction was measured as the Spearman correlation (r¯S) between observed and predicted phenotype, with its confidence interval assessed through a bootstrap approach. A large improvement of genome-assisted prediction (up to an almost 4-fold increase in accuracy) was found relative to pedigree index. Bayes A and RKHS regression were equally accurate (r¯S = 0.27) when all 3481 SNPs were included in the model. However, RKHS with 400 pre-selected informative SNPs was more accurate than Bayes A with all SNPs.  相似文献   
6.
Modern commercial chickens have been bred for one of two specific purposes: meat production (broilers) or egg production (layers). This has led to large phenotypic changes, so that the genomic signatures of selection may be detectable using statistical techniques. Genetic differentiation between nine distinct broiler lines was calculated using Weir and Cockerham's pairwise FST estimator for 11 003 genome‐wide markers to identify regions showing evidence of differential selection across lines. Differentiation measures were averaged into overlapping sliding windows for each line, and a permutation approach was used to determine the significance of each window. A total of 51 regions were found to show significant differentiation between the lines. Several lines were consistently found to share significant regions, suggesting that the pattern of line divergence is related to selection for broiler traits. The majority of the 51 regions contain QTL relating to broiler traits, but only five of them were found to be significantly enriched for broiler QTL, including a region on chromosome 27 containing 39 broiler QTL and 114 genes. Additionally, a number of these regions have been identified by other selection mapping studies. This study has identified a large number of potential selection signatures, and further tests with higher‐density marker data may narrow these regions down to individual genes.  相似文献   
7.
The performance of linear regression models in genome-wide association studies is influenced by how marker information is parameterized in the model. Considering the impact of parameterization is especially important when using information from multiple markers to test for association. Properties of the population, such as linkage disequilibrium (LD) and allele frequencies, will also affect the ability of a model to provide statistical support for an underlying quantitative trait locus (QTL). Thus, for a given location in the genome, the relationship between population properties and model parameterization is expected to influence the performance of the model in providing evidence for the position of a QTL. As LD and allele frequencies vary throughout the genome and between populations, understanding the relationship between these properties and model parameterization is of considerable importance in order to make optimal use of available genomic data. Here, we evaluate the performance of regression-based association models using genotype and haplotype information across the full spectrum of allele frequency and LD scenarios. Genetic marker data from 200 broiler chickens were used to simulate genomic conditions by selecting individual markers to act as surrogate QTL (sQTL) and then investigating the ability of surrounding markers to estimate sQTL genotypes and provide statistical support for their location. The LD and allele frequencies of markers and sQTL are shown to have a strong effect on the performance of models relative to one another. Our results provide an indication of the best choice of model parameterization given certain scenarios of marker and QTL LD and allele frequencies. We demonstrate a clear advantage of haplotype-based models, which account for phase uncertainty over other models tested, particularly for QTL with low minor allele frequencies. We show that the greatest advantage of haplotype models over single-marker models occurs when LD between markers and the causal locus is low. Under these situations, haplotype models have a greater accuracy of predicting the location of the QTL than other models tested.  相似文献   
8.
9.
AlphaImpute is a flexible and accurate genotype imputation tool that was originally designed for the imputation of genotypes on autosomal chromosomes. In some species, sex chromosomes comprise a large portion of the genome. For example, chromosome Z represents approximately 8% of the chicken genome and therefore is likely to be important in determining genetic variation in a population. When breeding programs make selection decisions based on genomic information, chromosomes that are not represented on the genotyping platform will not be subject to selection. Therefore imputation algorithms should be able to impute genotypes for all chromosomes. The objective of this research was to extend AlphaImpute so that it could impute genotypes on sex chromosomes. The accuracy of imputation was assessed using different genotyping strategies in a real commercial chicken population. The correlation between true and imputed genotypes was high in all the scenarios and was 0.96 for the most favourable scenario. Overall, the accuracy of imputation of the sex chromosome was slightly lower than that of autosomes for all scenarios considered.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号