首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   1篇
  2021年   1篇
  2018年   1篇
  2015年   2篇
  2014年   4篇
  2012年   4篇
  2010年   2篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2003年   1篇
  1998年   1篇
  1993年   1篇
  1979年   2篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
1.

Background  

Parathyroid hormone (PTH) and PTH-related peptide (PTHrP) belong to a family of endocrine factors that share a highly conserved N-terminal region (amino acids 1-34) and play key roles in calcium homeostasis, bone formation and skeletal development. Recently, PTH-like peptide (PTH-L) was identified in teleost fish raising questions about the evolution of these proteins. Although PTH and PTHrP have been intensively studied in mammals their function in other vertebrates is poorly documented. Amphibians and birds occupy unique phylogenetic positions, the former at the transition of aquatic to terrestrial life and the latter at the transition to homeothermy. Moreover, both organisms have characteristics indicative of a complex system in calcium regulation. This study investigated PTH family evolution in vertebrates with special emphasis on Xenopus and chicken.  相似文献   
2.
DNA gyrase is the only topoisomerase that can introduce negative supercoils into DNA. It is thought that the binding of conventional type II topoisomerases, including topoisomerase IV, to DNA takes place at the catalytic domain across the DNA gate, whereas DNA gyrase binds to DNA not only at the amino-terminal catalytic domain but also at the carboxyl-terminal domain (CTD) of the GyrA subunit. The binding of the GyrA CTD to DNA allows gyrase to wrap DNA around itself and catalyze the supercoiling reaction. Recent structural studies, however, have revealed striking similarities between the GyrA CTD and the ParC CTD, as well as the ability of the ParC CTD to bind and bend DNA. Thus, the molecular basis of gyrase-mediated wrapping of DNA needs to be reexamined. Here, we have conducted a mutational analysis to determine the role of the "GyrA-box," a 7-amino acid-long motif unique to the GyrA CTD, in determining the DNA binding mode of gyrase. Either a deletion of the entire GyrA-box or substitution of the GyrA-box with 7 Ala residues abolishes the ability of gyrase to wrap DNA around itself and catalyze the supercoiling reaction. However, these mutations do not affect the relaxation and decatenation activities of gyrase. Thus, the presence of a GyrA-box allows gyrase to wrap DNA and catalyze the supercoiling reaction. The consequence of the loss of the GyrA-box during evolution of bacterial type II topoisomerases is discussed.  相似文献   
3.
4.

Background  

Although direct infiltration of papillary carcinoma of thyroid to larynx, trachea and esophagus is well recognized, lymphatic and vascular metastases to larynx and hypopharynx have rarely been reported.  相似文献   
5.
Morphine, first characterized in opium from the poppy Papaver somniferum, is one of the strongest known analgesics. Endogenous morphine has been identified in several mammalian cells and tissues. The synthetic pathway of morphine in the opium poppy has been elucidated. The presence of common intermediates in plants and mammals suggests that biosynthesis occurs through similar pathways (beginning with the amino acid l-tyrosine), and the pathway has been completely delineated in plants. Some of the enzymes in the mammalian pathway have been identified and characterized. Two of the latter steps in the morphine biosynthesis pathway are demethylation of thebaine at the O3- and the O6-positions, the latter of which has been difficult to demonstrate. The plant enzymes responsible for both the O3-demethylation and the O6-demethylation are members of the FeII/α-ketoglutarate-dependent dioxygenase family. Previous studies showed that human cytochrome P450 (P450) 2D6 can catalyze thebaine O3-demethylation. We report that demethylation of thebaine at the O6-position is selectively catalyzed by human P450s 3A4 and 3A5, with the latter being more efficient, and rat P450 3A2. Our results do not support O6-demethylation of thebaine by an FeII/α-ketoglutarate-dependent dioxygenase. In rat brain microsomes, O6-demethylation was inhibited by ketoconazole, but not sulfaphenazole, suggesting that P450 3A enzymes are responsible for this activity in the brain. An alternate pathway to morphine, oripavine O6-demethylation, was not detected. The major enzymatic steps in mammalian morphine synthesis have now been identified.  相似文献   
6.
Nicotine is the primary addictive agent in tobacco products and is metabolized in humans by CYP2A6. Decreased CYP2A6 activity has been associated with decreased smoking. The extrahepatic enzyme, CYP2A13 (94% identical to CYP2A6) also catalyzes the metabolism of nicotine, but is most noted for its role in the metabolic activation of the tobacco specific lung carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). In this study, the inhibition and potential inactivation of CYP2A6 and CYP2A13 by two tobacco constituents, 1-methyl-4-(3-pyridinyl) pyrrole (β-nicotyrine) and (-)-menthol were characterized and compared to the potent mechanism based inactivator of CYP2A6, menthofuran. The effect of these compounds on CYP2A6 and CYP2A13 activity was significantly different. (-)-Menthol was a more efficient inhibitor of CYP2A13 than of CYP2A6 (KI, 8.2 μM and 110 μM, respectively). β-Nicotyrine was a potent inhibitor of CYP2A13 (KI, 0.17 μM). Neither menthol nor β-nicotyrine was an inactivator of CYP2A13. Whereas, β-nicotyrine was a mechanism based inactivator of CYP2A6 (KI(inact), 106 μM, kinact was 0.61 min(-1)). Similarly, menthofuran, a potent mechanism based inactivator of CYP2A6 did not inactivate CYP2A13. Menthofuran was an inhibitor of CYPA13 (KI, 1.24 μM). The inactivation of CYP2A6 by either β-nicotyrine or menthofuran was not due to modification of the heme and was likely due to modification of the apo-protein. These studies suggest that β-nicotyrine, but not menthol may influence nicotine and NNK metabolism in smokers.  相似文献   
7.
Cyanobacterium Anacystis nidulans R2, Synechocystis sp. PCC 6803 (wild-type strain and mutants Delta2 and Delta3 lacking PSII and PSI, respectively), and Synechocystis sp. BO 9201 synthesize the pigment--protein complex CP36 (CPIV-4, CP43') under iron deficiency in the medium. Accumulation of CP36 is accompanied by structural reorganizations in the photosynthetic membranes. Integrating mean times of excitation relaxation (quenching) are 2.2 nsec (CP36), 1 nsec (PSI), and 420 psec (PSII in Fm state). The energy migration between CP36 and the photosystems can be described by a model of a one-layer ring of CP36 around core-complexes. The excitation from CP36 to PSI is transferred within <10 psec. The energy transfer from CP36 to PSII occurs during 170 psec. Cells with low content of CP36 probably contain only a latent fraction of unbound to phycobilisomes PSII which is the analog of PSIIbeta of higher plants. In PSI there are four binding sites for CP36 monomers per RC. PSII can bind up to 32 molecules of CP36 per RC. Cells with a large amount of CP36 contain monomer form of PSII core-complex which can bind eight tetramers of CP36 (8 binding sites). In conditions of iron deficiency only one monomer of a dimer PSII core-complex is destroyed and released chlorophyll is accumulated in CP36. Accumulation of CP36 in A. nidulans cells can be accompanied by membrane stacking which is similar to the stacking in chlorophyll b-containing organisms. The stacking can occur in the region of localization of PSII latent fraction bound to CP36. The membrane stacking shields PSII stromal surfaces from the aqueous phase for activation of electron transfer on the acceptor side of PSII.  相似文献   
8.
In order to determine whether there is a genetic component to hip or knee joint failure due to idiopathic osteoarthritis (OA), we invited patients (probands) undergoing hip or knee arthroplasty for management of idiopathic OA to provide detailed family histories regarding the prevalence of idiopathic OA requiring joint replacement in their siblings. We also invited their spouses to provide detailed family histories about their siblings to serve as a control group. In the probands, we confirmed the diagnosis of idiopathic OA using American College of Rheumatology criteria. The cohorts included the siblings of 635 probands undergoing total hip replacement, the siblings of 486 probands undergoing total knee replacement, and the siblings of 787 spouses. We compared the prevalence of arthroplasty for idiopathic OA among the siblings of the probands with that among the siblings of the spouses, and we used logistic regression to identify independent risk factors for hip and knee arthroplasty in the siblings. Familial aggregation for hip arthroplasty, but not for knee arthroplasty, was observed after controlling for age and sex, suggesting a genetic contribution to end-stage hip OA but not to end-stage knee OA. We conclude that attempts to identify genes that predispose to idiopathic OA resulting in joint failure are more likely to be successful in patients with hip OA than in those with knee OA.  相似文献   
9.

Background

The PCR technique and its variations have been increasingly used in the clinical laboratory and recent advances in this field generated new higher resolution techniques based on nucleic acid denaturation dynamics. The principle of these new molecular tools is based on the comparison of melting profiles, after denaturation of a DNA double strand. Until now, the secondary structure of single-stranded nucleic acids has not been exploited to develop identification systems based on PCR. To test the potential of single-strand RNA denaturation as a new alternative to detect specific nucleic acid variations, sequences from viruses of the Totiviridae family were compared using a new in silico melting curve approach. This family comprises double-stranded RNA virus, with a genome constituted by two ORFs, ORF1 and ORF2, which encodes the capsid/RNA binding proteins and an RNA-dependent RNA polymerase (RdRp), respectively.

Results

A phylogenetic tree based on RdRp amino acid sequences was constructed, and eight monophyletic groups were defined. Alignments of RdRp RNA sequences from each group were screened to identify RNA regions with conserved secondary structure. One region in the second half of ORF2 was identified and individually modeled using the RNAfold tool. Afterwards, each DNA or RNA sequence was denatured in silico using the softwares MELTSIM and RNAheat that generate melting curves considering the denaturation of a double stranded DNA and single stranded RNA, respectively. The same groups identified in the RdRp phylogenetic tree were retrieved by a clustering analysis of the melting curves data obtained from RNAheat. Moreover, the same approach was used to successfully discriminate different variants of Trichomonas vaginalis virus, which was not possible by the visual comparison of the double stranded melting curves generated by MELTSIM.

Conclusion

In silico analysis indicate that ssRNA melting curves are more informative than dsDNA melting curves. Furthermore, conserved RNA structures may be determined from analysis of individuals that are phylogenetically related, and these regions may be used to support the reconstitution of their phylogenetic groups. These findings are a robust basis for the development of in vitro systems to ssRNA melting curves detection.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-243) contains supplementary material, which is available to authorized users.  相似文献   
10.
Human mesenchymal stem cells (MSCs) are a promising candidate for cell-based transplantation and regenerative medicine therapies. Thus in the present study Wharton’s Jelly Mesenchymal Stem Cells (WJ-MSCs) have been derived from extra embryonic umbilical cord matrix following removal of both arteries and vein. Also, to overcome the clinical limitations posed by fetal bovine serum (FBS) supplementation because of xenogeneic origin of FBS, usual FBS cell culture supplement has been replaced with human platelet lysate (HPL). Apart from general characteristic features of bone marrow-derived MSCs, wharton jelly-derived MSCs have the ability to maintain phenotypic attributes, cell growth kinetics, cell cycle pattern, in vitro multilineage differentiation plasticity, apoptotic pattern, normal karyotype-like intrinsic mesenchymal stem cell properties in long-term in vitro cultures. Moreover, the WJ-MSCs exhibited the in vitro multilineage differentiation capacity by giving rise to differentiated cells of not only mesodermal lineage but also to the cells of ectodermal and endodermal lineage. Also, WJ-MSC did not present any aberrant cell state upon in vivo transplantation in SCID mice and in vitro soft agar assays. The immunomodulatory potential assessed by gene expression levels of immunomodulatory factors upon exposure to inflammatory cytokines in the fetal WJ-MSCs was relatively higher compared to adult bone marrow-derived MSCs. WJ-MSCs seeded on decellularized amniotic membrane scaffold transplantation on the skin injury of SCID mice model demonstrates that combination of WJ-MSCs and decellularized amniotic membrane scaffold exhibited significantly better wound-healing capabilities, having reduced scar formation with hair growth and improved biomechanical properties of regenerated skin compared to WJ-MSCs alone. Further, our experimental data indicate that indocyanin green (ICG) at optimal concentration can be resourcefully used for labeling of stem cells and in vivo tracking by near infrared fluorescence non-invasive live cell imaging of labelled transplanted cells, thus proving its utility for therapeutic applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号