首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   129篇
  免费   8篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2015年   6篇
  2014年   11篇
  2013年   7篇
  2012年   3篇
  2011年   4篇
  2010年   6篇
  2009年   5篇
  2008年   1篇
  2007年   10篇
  2006年   1篇
  2005年   4篇
  2004年   6篇
  2003年   5篇
  2002年   2篇
  2001年   4篇
  2000年   1篇
  1999年   6篇
  1998年   2篇
  1997年   2篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1992年   4篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1985年   5篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1979年   1篇
  1978年   3篇
  1977年   2篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1959年   1篇
  1953年   1篇
排序方式: 共有137条查询结果,搜索用时 46 毫秒
1.
The assembly pathway of the oligosaccharide chains of asparagine-linked glycoproteins in mammalian cells begins with the formation of GlcNAc-PP-dolichol in a reaction catalysed by the enzyme N-acetylglucosamine 1-phosphate transferase. We have investigated the efficiency of two lipid substrates for the transferase activity in an in vitro assay using Chinese hamster ovary (CHO) cell membranes as an enzyme source. Experiments were carried out with varying concentrations of dolichyl phosphate or its precursor, polyprenyl phosphate. We determined that enzyme activity was optimal at pH 9, where the enzyme exhibited a 3-fold higher Vmax and a 2-fold lower Km for the dolichol substrate. At pH 7.4, the Km and Vmax differences between the two lipids were 10-fold. Under all assay conditions tested, we found that GlcNAc-PP-lipid was the only product formed. We conclude from these results that dolichyl phosphate rather than polyprenyl phosphate is the preferred substrate for the transferase enzyme in CHO cells. This observation is significant in light of the fact that we have previously isolated CHO glycosylation mutants which fail to convert polyprenol into dolichol, and hence utilize polyprenyl derivatives for glycosylation reactions. Thus, these results contribute to our understanding of the glycosylation defects in the mutant cell lines.  相似文献   
2.
Previous results suggested that F2A8, a glycosylation mutant of Chinese hamster ovary cells, had a lower amount of dolichyl phosphate available for asparagine-linked glycosylation reactions relative to parental cells. The steady-state amounts and identities of polyisoprenoid lipids were determined by incubating F2A8, its parental cell line B4-2-1, and wild-type Chinese hamster ovary cells for 24 h with [2-3H]mevalonate. The neutral lipids, ubiquinone, cholesterol, and cholesteryl esters, which were the most highly labeled from [3H]mevalonate, were labeled equally in all three cell types. In wild-type and B4-2-1 cells, mevalonate incorporation into the anionic glycosylated and phosphorylated derivatives of dolichol was 10-fold higher than into the neutral free dolichol and dolichyl esters. In contrast, in F2A8 cells, label accumulated in neutral polyisoprenol lipids, so that the ratio of neutral to anionic lipids was 1:1 rather than 1:10. In wild-type and B4-2-1 cells, the polyisoprenoid found as free alcohol and in phosphorylated and glycosylated forms was shown by high pressure liquid chromatography using a silica column to be primarily dolichol, a polyisoprenol that has a saturated terminal isoprene unit. In contrast, in F2A8 cells the polyisoprenoid found primarily as the free alcohol and in phosphorylated and glycosylated forms appeared to be completely unsaturated polyprenol. The distribution of chain lengths of the labeled polyisoprenols of F2A8, B4-2-1, and wild-type cells was the same as determined by high pressure liquid chromatography using a reverse-phase column, with the predominant chain length being 19 isoprene units. These results combined with our previous studies on the phenotype of the F2A8 mutant indicate that the unsaturated polyprenyl phosphate derivatives do not function as well as dolichyl phosphate derivatives in cellular glycosylation reactions.  相似文献   
3.
A novel screening procedure was developed for isolating Chinese hamster ovary cell mutants altered in the early steps of the biosynthesis of asparagine-linked glycoproteins. This procedure identifies cells with low intracellular levels of two lysosomal hydrolases, beta-glucuronidase and alpha-iduronidase. One mutant cell line isolated in this way, CHB 11-1-3, has low intracellular levels of seven lysosomal enzymes as compared to wild-type cells. Although CHB 11-1-3 synthesizes mannosylphosphoryldolichol and [Man]5[NAcG1cNH2]2-P-P-lipid, it fails to utilize these lipid intermediates to make normal amounts of [Glc]3[Man]9[NAcG1cNH2]2P-P-lipid. As a consequence of this glycosylation defect, this mutant transfers oligosaccharides of a different structure than wild type to the lysosomal enzyme beta-hexosaminidase. In addition, it underglycosylates its proteins.  相似文献   
4.
5.
B4-2-1 cells (Lec15 cells) are Chinese hamster ovary cells deficient in mannosylphosphoryldolichol synthase activity. They synthesize the truncated lipid intermediate Man5GlcNAc2-P-P-dolichol rather than the Glc3Man9GlcNAc2-P-P-dolichol synthesized by wild-type cells. In this report we present evidence that these cells did synthesize glucosylated Man5GlcNAc2-P-P-dolichol, but this species represented only a minor fraction of the labeled oligosaccharide-lipid. On the other hand, glucosylated oligosaccharides were a major species transferred to protein in these cells, showing that in vivo, glucosylated oligosaccharides are preferentially transferred to protein. The truncated oligosaccharides found in B4-2-1 cells were removed from the protein by N-glycanase treatment, since they were resistant to both endo-beta-N-acetylglucosaminidase H and F activity. B4-2-1 cells processed the glucosylated, truncated oligosaccharides transferred to G protein of vesicular stomatitis virus, leading to infectious virus.  相似文献   
6.
Chinese hamster ovary (CHO) cells of the Lec9 recessive complementationgroup display a distinctive profile of resistance to a varietyof toxic lectins. In addition, they accumulate cis--unsaturatedpolyprenol and use mainly polyprenol rather than dolichol tosynthesize the glycosylated lipids used in asparagine-linkedglycosylation of proteins. The primary defect in these cellsis thought to result from a deficiency in polyprenol reductaseactivity. Three new mutants were isolated and determined tohave qualitatively, although not quantitatively, similar lectinresistance profiles to Lec9 cells. Two of these mutants (AbrRand RicR) also contained polyprenol rather than dolichol. Thelectin resistance profile of an independent mutant which accumulatespolyprenol, F2A8, was also found to be qualitatively similarto the Lec9 pattern. The relationship among these mutants wasanalysed in more detail by construction of cell—cell hybrids.Lectin resistance profiles of the hybrids demonstrated thatAbrR, RicR and F2A8 fell into the Lec9 complementation group.Analysis of prenols in the hybrids also showed that F2A8 wasa member of the Lec9 group. Surprisingly, a significant fractionof the prenols found in Lec9 Parent hybrids was polyprenol(up to 30% of the neutral fraction), whereas the prenols foundin Parent Parent hybrids were nearly exclusively dolichol(97% of the neutral lipid fraction). Therefore, reduction ofpolyprenol to dolichol appears to be a rate-limiting step inthe synthesis of dolichol since hybrids with differing numbersof wild-type alleles can be biochemically distinguished. CHO cells dolichol lectins mutants polyprenol reductase  相似文献   
7.
L1 retroposons are represented in mice by subfamilies of interspersed sequences of varied abundance. Previous analyses have indicated that subfamilies are generated by duplicative transposition of a small number of members of the L1 family, the progeny of which then become a major component of the murine L1 population, and are not due to any active processes generating homology within preexisting groups of elements in a particular species. In mice, more than a third of the L1 elements belong to a clade that became active approximately 5 Mya and whose elements are > or = 95% identical. We have collected sequence information from 13 L1 elements isolated from two species of voles (Rodentia: Microtinae: Microtus and Arvicola) and have found that divergence within the vole L1 population is quite different from that in mice, in that there is no abundant subfamily of homologous elements. Individual L1 elements from voles are very divergent from one another and belong to a clade that began a period of elevated duplicative transposition approximately 13 Mya. Sequence analyses of portions of these divergent L1 elements (approximately 250 bp each) gave no evidence for concerted evolution having acted on the vole L1 elements since the split of the two vole lineages approximately 3.5 Mya; that is, the observed interspecific divergence (6.7%-24.7%) is not larger than the intraspecific divergence (7.9%-27.2%), and phylogenetic analyses showed no clustering into Arvicola and Microtus clades.   相似文献   
8.
9.
Maintenance of a high degree of biodiversity in homogeneous environments is poorly understood. A complex cheese starter culture with a long history of use was characterized as a model system to study simple microbial communities. Eight distinct genetic lineages were identified, encompassing two species: Lactococcus lactis and Leuconostoc mesenteroides. The genetic lineages were found to be collections of strains with variable plasmid content and phage sensitivities. Kill-the-winner hypothesis explaining the suppression of the fittest strains by density-dependent phage predation was operational at the strain level. This prevents the eradication of entire genetic lineages from the community during propagation regimes (back-slopping), stabilizing the genetic heterogeneity in the starter culture against environmental uncertainty.  相似文献   
10.
Irisin was first identified in muscle cells. We detected irisin immunoreactivity in various organs of the crested porcupine (Hystrix cristata). In the epidermis, irisin immunoreactivity was localized mainly in stratum basale, stratum spinosum and stratum granulosum layers; immunoreactivity was not observed in the stratum corneum. In the dermis, irisin was found in the external and internal root sheath, cortex and medulla of hair follicles, and in sebaceous glands. Irisin immunoreactivity was found in the neural retina and skeletal muscle fibers associated with the eye. The pineal and thyroid glands also exhibited irisin immunoreactivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号