首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   2篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2013年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2005年   2篇
  2003年   6篇
  2001年   1篇
  2000年   1篇
  1976年   1篇
排序方式: 共有23条查询结果,搜索用时 125 毫秒
1.
Sunlight causes lesions in DNA that if unrepaired and inaccurately replicated by DNA polymerases yield mutations that result in skin cancer in humans. Two enzymes involved in translesion synthesis (TLS) of UV-induced photolesions are DNA polymerase η (Polη) and polymerase ζ (Polζ), encoded by the RAD30A and REV3 genes, respectively. Previous studies have investigated the TLS roles of these polymerases in human and yeast cells irradiated with monochromatic, short wavelength UVC radiation (254 nm). However, less is known about cellular responses to solar radiation, which is of higher and mixed wavelengths (310–1100 nm) and produces a different spectrum of DNA lesions, including Dewar photoproducts and oxidative lesions. Here we report on the comparative cytotoxic and mutagenic effects of simulated sunlight (SSL) and UVC radiation on yeast wild-type, rad30Δ, rev3Δ and rev3Δ rad30Δ strains. The results with SSL support several previous interpretations on the roles of these two polymerases in TLS of photodimers and (6–4) photoproducts derived from studies with UVC. They further suggest that Polη participates in the non-mutagenic bypass of SSL-dependent cytosine-containing Dewar photoproducts and 8-oxoguanine, while Polζ is mainly responsible for the mutagenic bypass of all types of Dewar photoproducts. They also suggest that in the absence of Polζ, Polη contributes to UVC- and SSL-induced mutagenesis, possibly by the bypass of photodimers containing deaminated cytosine.  相似文献   
2.
The hydrodynamic properties of the C-reactive protein in solution (pH 6.8) were studied using quasi-elastic light scattering and size-exclusion liquid chromatography. It was shown that the solution containing the C-reactive protein represents a polydisperse system. The values of the translation diffusion coefficient and the apparent molecular weight of the C-reactive protein in solution at pH 6.8 were determined. The values of the translation diffusion coefficient, molecular weight and the hydration radius obtained suggest that the native pentameric C-reactive protein is the major form of the protein in solution at pH 6.8.  相似文献   
3.
The hydrodynamic properties of the C-reactive protein (CRP) at different pH were studied using quasi-elastic light scattering, size-exclusion liquid chromatography, and nonreducing gel electrophoresis. It was shown that a CRP solution at pH 5.0-7.2 presents a polydisperse system the major component of which is the native pentameric CRP. At pH 4.0-4.5, CRP exists in two states having different hydrodynamic properties: the native pentameric form with a molecular mass of 120 kDa and with the hydrodynamic radius of 4.03 nm and high-molecular-weight aggregates with a wide range of their molecular weight distribution. The interaction of the C-reactive protein with monoclonal antibodies to it indicates that conformation-dependent surface epitopes of the protein lose the native structure at pH 5.0-5.5. The aggregation of CRP is an irreversible process, which begins in a narrow pH range of pH 5.0-4.5 and is not accompanied by the dissociation into subunits but is determined by intermolecular interactions of its quasi-native pentamers.  相似文献   
4.
We have previously described a novel Escherichia coli detoxification system for the removal of toxic and mutagenic N-hydroxylated nucleobases and related compounds that requires the molybdenum cofactor. Two subpathways (ycbX and yiiM) were identified, each employing a novel molybdo activity capable of inactivating N-hydroxylated compounds by reduction to the corresponding amine. In the present study, we identify the cysJ gene product as one additional component of this system. While the CysJ protein has been identified as the NADPH:flavin oxidoreductase component of the CysJI sulfite reductase complex (CysJ8I4), we show that the role of CysJ in base analog detoxification is unique and independent of CysI and sulfite reductase. We further show that CysJ functions as a specific partner of the YcbX molybdoenzyme. We postulate that the function of CysJ in this pathway is to provide, via its NADPH:flavin reductase activity, the reducing equivalents needed for the detoxification reaction at the YcbX molybdocenter. In support of the proposed interaction of the CysJ and YcbX proteins, we show that an apparent CysJ-YcbX “hybrid” protein from two Vibrio species is capable of compensating for a double cysJ ycbX defect in E. coli.Mutagenic base analogs are chemically modified nucleobases that can be incorporated in the cellular metabolism through purine or pyrimidine salvage pathways. Once converted to the deoxynucleoside triphosphate (dNTP) level, they may participate in DNA replication in an error-prone manner because of their ambivalent base-pairing capacity (11). Such synthetic base analogs are often used as a sensitive tool for studying DNA replication fidelity, DNA repair, or the metabolism of nucleic acid precursors. Mutagenic base analogs such as 8-oxoguanine or 3-methyladenine can also be formed in vivo as a consequence of normal cellular metabolism or produced by chemical and physical factors, such as alkylating agents or ionizing radiation.An important group of mutagenic and cytotoxic analogs are the N-hydroxylated nucleobases (or ribosides) such as 6-N-hydroxylaminopurine (HAP), 2-amino-HAP, or N4-hydroxycytidine (15). Specifically, HAP was found to be a very strong mutagen in bacteria and fungi, as well as mammalian cells (2, 20, 27). Some data have suggested that HAP may also be formed in vivo under oxidative stress (30) or as a by-product of certain purine salvage/interconversion pathways (5, 22).The genetic control of HAP-induced mutagenesis has been studied in some detail in the yeast Saccharomyces cerevisiae and in the bacterium Escherichia coli. In S. cerevisiae, resistance to HAP depends primarily on genes involved in adjusting and regulating the DNA or RNA precursor pools (HAM1 [ITP/XTPase], AAH1 [adenine aminohydrolase], and ADE genes involved in de novo AMP biosynthesis) (34).In E. coli, the major pathway that protects cells against HAP and related N-hydroxylated compounds is controlled by the moa, moe, and mog genes, which are required for biosynthesis of molybdenum cofactor (MoCo) (18, 19). MoCo is an essential cofactor for a varied group of oxidoreductases that are widely distributed from bacteria to humans. Chemically, MoCo is a pterin derivative (molybdopterin) that coordinates a molybdenum atom that serves as a catalytic redox center (for reviews, see references 23, 28, and 29). Based on catalytic details and sequence homology, molybdopterin-containing enzymes have been divided in four families: the xanthine oxidase family, the sulfite oxidase family, the dimethyl sulfoxide (DMSO) reductase family, and the aldehyde ferredoxin oxidoreductase family (14, 16). However, our previous studies on the MoCo-dependent resistance to HAP showed that none of the known or putative E. coli members of these families are responsible for the major HAP resistance mechanism (19). Instead, we discovered that HAP resistance is dependent on two newly described proteins, YcbX and YiiM, that are characterized by a so-called MOSC domain (molybdenum cofactor sulfurase C-terminal domain) (1, 17). This domain was first described as part of eukaryotic MoCo sulfurases (MOSs) (1), and it most likely represents a novel class of MoCo-binding domain, as indicated by studies on two mammalian MOSC-containing proteins (mARC1 and mARC2) discovered in mitochondria (12, 13).Our studies in E. coli showed that cell-free bacterial extracts were capable of converting HAP to adenine by an N-reductive reaction (17). Importantly, this conversion was entirely dependent on the presence of MoCo and the YcbX or YiiM proteins (17). Consequently, we suggested that this reduction of HAP to adenine forms the basis of the in vivo MoCo-dependent detoxification in E. coli (17). Interestingly, the mammalian MOSC-containing proteins mARC1 and mARC2 were shown to mediate the reduction of the N-hydroxylated prodrug benzamidoxime to its active amino form benzamidine (12, 13). Thus, the reduction of N-hydroxylated compounds may be a defining feature for the broadly distributed MOSC proteins (1).Our previous analyses also revealed that the E. coli ycbX and yiiM genes define two independent subpathways within the MoCo-dependent system (17). This is illustrated in the overall scheme shown in Fig. Fig.1.1. MoCo is synthesized in a series of steps from GTP by-products of the moa, moe, and mog operons. MoCo is then used as a cofactor for the YcbX and YiiM proteins, which reduce the N-hydroxylated compound to the corresponding amino form. The ycbX and yiiM pathways are genetically distinct as determined by epistasis experiments (17). They also differ by their substrate specificity patterns: YcbX protects most strongly against HAP, whereas YiiM has its largest effects toward hydroxylamine (NH2OH) (17).Open in a separate windowFIG. 1.Genetic framework for the major molybdenum cofactor (MoCo)-dependent pathways of detoxification of N-hydroxylated base analogs in E. coli (17). moaA to mogA indicate the series of genes required for MoCo biosynthesis (19, 28), while ycbX and yiiM represent the two independent subpathways identified within the MoCo-dependent pathway (17). Specifically, ycbX and yiiM produce apoenzymes that react with MoCo to form the active YcbX and YiiM proteins. The diagram also indicates the differential specificity of the two subpathways toward the model N-hydroxylated compounds used in our studies: 6-N-hydroxylaminopurine (HAP), 2-amino-HAP (AHAP), and hydroxylamine (NH2OH). For simplicity, the diagram does not distinguish between the MPT and MGD forms of MoCo (19). As shown elsewhere (19), YcbX and YiiM likely employ the MPT form. One additional, minor pathway for HAP detoxification dependent on biotin sulfoxide reductase (an MGD-requiring enzyme) is observable only in the double ycbX yiiM-deficient background and is likewise not shown here (see reference 17 for details).Prior to the establishment of this scheme of YcbX and YiiM as molybdoproteins, we had entertained certain alternative possibilities for the precise function of the ycbX and yiiM open reading frames (ORFs), including a possible role in MoCo sulfuration (which is a required modification of MoCo in certain molybdoenzymes, such as xanthine oxidase) (23, 29). This sulfuration model was ultimately eliminated (17), but certain experiments related to this hypothesis yielded interesting further clues regarding the detailed mechanisms of HAP resistance. These observations included an unexpected HAP-sensitive phenotype for cysJ mutants as well as a noted sensitization of wild-type strains to HAP by l-cysteine. In the present work, we describe these experiments and show the cysJ gene to be an essential component of the ycbX branch of HAP resistance. In a related mechanism, the observed sensitization of wild-type strains by l-cysteine results from the suppression, by l-cysteine, of the cys regulon. Overall, our experiments suggest that CysJ is a specific protein partner of YcbX and that CysJ mediates the N-reductive reaction through its NADPH:flavin oxidoreductase activity. This activity provides reducing equivalents to its partner YcbX, which ultimately performs the reduction of HAP to nontoxic adenine at its molybdocenter.  相似文献   
5.
We have shown previously that lack of molybdenum cofactor (MoCo) in Escherichia coli leads to hypersensitivity to the mutagenic and toxic effects of N -hydroxylated base analogues, such as 6- N -hydroxylaminopurine (HAP). However, the nature of the MoCo-dependent mechanism is unknown, as inactivation of all known and putative E. coli molybdoenzymes does not produce any sensitivity. Presently, we report on the isolation and characterization of two novel HAP-hypersensitive mutants carrying defects in the ycbX or yiiM open reading frames. Genetic analysis suggests that the two genes operate within the MoCo-dependent pathway. In the absence of the ycbX - and yiiM -dependent pathways, biotin sulfoxide reductase plays also a role in the detoxification pathway. YcbX and YiiM are hypothetical members of the MOSC protein superfamily, which contain the C-terminal domain (MOSC) of the eukaryotic MoCo sulphurases. However, deletion of ycbX or yiiM did not affect the activity of human xanthine dehydrogenase expressed in E. coli , suggesting that the role of YcbX and YiiM proteins is not related to MoCo sulphuration. Instead, YcbX and YiiM may represent novel MoCo-dependent enzymatic activities. We also demonstrate that the MoCo/YcbX/YiiM-dependent detoxification of HAP proceeds by reduction to adenine.  相似文献   
6.
The molecular mass and sedimentation coefficient of native C-reactive protein in solution were determined by analytical ultracentrifugation in the presence and absence of calcium ions. Pentameric C-reactive protein was shown to be the major macroscopic form of this protein in solution. The removal of calcium ions from solution caused decompaction of the protein accompanied by changes in its hydrodynamic parameters. The sedimentation coefficient s 0 20,w of pentameric C-reactive protein in solution containing 2 mM Ca2+ (6.6S) exceeded that for C-reactive protein in solution containing 2 mM EDTA (6.4S). Analysis of average molecular masses M w and M z obtained from sedimentation data demonstrated that the solution of highly purified protein was not homogeneous. As shown by intermolecular crosslinking, the solution also contained the 241-kDa decamer of C-reactive protein (9.5S) as a separate macroscopic form, whose share hardly reached 10% in the presence of 2 mM Ca2+ and increased after removal of calcium ions. The decamers were shown to result from intermolecular association of the pentamers.  相似文献   
7.
We studied the effect of inactivation of genes, which control biosynthesis of inosine monophosphate (IMP) de novo and purine salvage and interconversion pathways, on sensitivity of yeast Saccharomyces cerevisiae to the mutagenic and toxic action of 6-hydroxylaminopurine (HAP) and 2-amino-6-hydroxylaminopurine (AHA). It was shown that the manifestation of HAP and AHA mutagenic properties depends on the action of enzyme adenine phosphoribosyltransferase encoded in yeast by APT1 gene. A blockade of any step of IMP biosynthesis, with the exception of the block mediated by inactivation of genes ADE16 and ADE17 leading to the accumulation of 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), was shown to enhance yeast cell sensitivity to the HAP mutagenic effect; however, it does not affect the sensitivity to AHA. A block of conversion of IMP into adenosine monophosphate (AMP) causes hypersensitivity of yeast cells to the mutagenic action of HAP and to the toxic effect of HAP, AHA, and hypoxanthine. It is possible that this enhancement of sensitivity to HAP and AHA is due to changes in the pool of purines. We conclude that genes ADE12, ADE13, AAH1, and HAM1 controlling processes of purine salvage and interconversion in yeast, make the greatest contribution to the protection against the toxic and mutagenic action of the examined analogs. Possible mechanisms of HAP detoxication in bacteria, yeast, and humans are discussed.  相似文献   
8.
Actin is the primary cellular receptor of bistramide A   总被引:1,自引:0,他引:1  
Bistramide A (1) is a marine natural product with broad, potent antiproliferative effects. Bistramide A has been reported to selectively activate protein kinase C (PKC) delta, leading to the view that PKCdelta is the principal mediator of antiproliferative activity of this natural product. Contrary to this observation, we established that bistramide A binds PKCdelta with low affinity, does not activate this kinase in vitro and does not translocate GFP-PKCdelta. Furthermore, we identified actin as the cellular receptor of bistramide A. We report that bistramide A disrupts the actin cytoskeleton, inhibits actin polymerization, depolymerizes filamentous F-actin in vitro and binds directly to monomeric G-actin in a 1:1 ratio with a Kd of 7 nM. We also constructed a fully synthetic9 bistramide A-based affinity matrix and isolated actin as a specific bistramide A-binding protein. This activity provides a molecular explanation for the potent antiproliferative effects of bistramide A, identifying it as a new biochemical tool for studies of the actin cytoskeleton and as a potential lead for development of a new class of antitumor agents.  相似文献   
9.
Tumor-associated antibodies of human IgG1 subclass were eluted from cell-surface antigens of human carcinoma cells and studied by differential scanning calorimetry and binding to local conformational probes, protein A from Staphylococcus aureus and a monoclonal antibody targeted to the CH2 domain of the Fc fragment. At pH 2.0-7.0, we observed virtually identical enthalpies of thermal unfolding for IgG1 from normal human sera and tumor-associated IgG1. The exact values of calorimetric enthalpy (h) at pH 7.0 were 6.1 and 6.2-6.3 cal/g for IgG1 from normal serum and IgG1 from carcinoma cells, respectively. The affinity constants of protein A binding to the CH2–CH3 domain interface demonstrated differences between serum IgG1 and tumor associated IgG1 that did not exceed 3-8-fold. The binding affinity toward the anti-CH2 monoclonal antibody determined for serum IgG1 and IgG1 from carcinoma cells differed not more than 2.5-fold. The thermodynamic parameters of IgG1 from carcinoma cells strongly suggest that protein conformational stability was essentially unaltered and that the Fc fragment of the tumor-derived IgG1 preserved its structural integrity.  相似文献   
10.
Leucascandrolide A and neopeltolide are structurally homologous marine natural products that elicit potent antiproliferative profiles in mammalian cells and yeast. The scarcity of naturally available material has been a significant barrier to their biochemical and pharmacological evaluation. We developed practical synthetic access to this class of natural products that enabled the determination of their mechanism of action. We demonstrated effective cellular growth inhibition in yeast, which was substantially enhanced by substituting glucose with galactose or glycerol. These results, along with genetic analysis of determinants of drug sensitivity, suggested that leucascandrolide A and neopeltolide may inhibit mitochondrial ATP synthesis. Evaluation of the activity of the four mitochondrial electron transport chain complexes in yeast and mammalian cells revealed cytochrome bc(1) complex as the principal cellular target. This result provided the molecular basis for the potent antiproliferative activity of this class of marine macrolides, thus identifying them as new biochemical tools for investigation of eukaryotic energy metabolism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号