首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   27篇
  国内免费   2篇
  2023年   1篇
  2018年   1篇
  2017年   3篇
  2015年   3篇
  2014年   3篇
  2013年   3篇
  2012年   4篇
  2010年   2篇
  2009年   6篇
  2008年   2篇
  2007年   2篇
  2006年   4篇
  2005年   2篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1996年   5篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   5篇
  1977年   2篇
  1975年   3篇
  1973年   4篇
  1972年   1篇
  1970年   4篇
  1969年   1篇
  1968年   2篇
  1967年   1篇
  1965年   2篇
  1957年   1篇
  1956年   2篇
排序方式: 共有100条查询结果,搜索用时 78 毫秒
1.
To elucidate phylogenetic relationships among amniotes and the evolution of alpha globins, hemoglobins were analyzed from the Komodo dragon (Komodo monitor lizard) Varanus komodoensis, the world's largest extant lizard, inhabiting Komodo Islands, Indonesia. Four unique globin chains (alpha A, alpha D, beta B, and beta C) were isolated in an equal molar ratio by high performance liquid chromatography from the hemolysate. The amino acid sequences of two alpha chains were determined. The alpha D chain has a glutamine at E7 as does an alpha chain of a snake, Liophis miliaris, but the alpha A chain has a histidine at E7 like the majority of hemoglobins. Phylogenetic analyses of 19 globins including two alpha chains of Komodo dragon and ones from representative amniotes showed the following results: (1) The a chains of squamates (snakes and lizards), which have a glutamine at E7, are clustered with the embryonic alpha globin family, which typically includes the alpha D chain from birds; (2) birds form a sister group with other reptiles but not with mammals; (3) the genes for embryonic and adult types of alpha globins were possibly produced by duplication of the ancestral alpha gene before ancestral amniotes diverged, indicating that each of the present amniotes might carry descendants of the two types of alpha globin genes; (4) squamates first split off from the ancestor of other reptiles and birds.   相似文献   
2.
Abstract Adult orthonectids develop from germinal cells within a cytoplasmic matrix called a plasmodium. This is generally assumed to be formed by the parasite. In the case of Rhopalura ophiocomae, which lives in the brittle star Amphipholis squamata, the plasmodia occupying the perivisceral coelom are closely associated with the walls of the genital bursae or the gut, and they are covered by peritoneum. They have been reported to contain scattered small nuclei distinct from those within germinal cells, embryos, and adults, but the results of the present study indicate that such nuclei probably do not exist. Furthermore, electron micrographs show that some plasmodia are in continuity with the cytoplasm of contractile cells that lie beneath the peritoneum of a genital bursa or the gut of the host. The matrix of a plasmodium of R. ophiocomaeappears, therefore, to consist of cytoplasm of a contractile cell. It is proposed that after a contractile cell has been entered by an infective cell of the parasite, it hypertrophies, bulging progressively farther into the perivisceral coelom and lifting up the peritoneum, which remains in intimate contact with it.  相似文献   
3.
Additional evidence is presented that both the phage T4D-induced thymidylate synthetase (gp td) and the T4D-induced dihydrofolate reductase (gp frd) are baseplate structural components. With regard to phage td it has been found that: (i) low levels of thymidylate synthetase activity were present in highly purified preparations of T4D ghost particles produced after infection with td+, whereas particles produced after infection with td had no measurable enzymatic activity; (ii) a mutation of the T4D td gene from tdts to td+ simultaneously produced a heat-stable thymidylate synthetase enzyme and heat-stable phage particles (it should be noted that the phage baseplate structure determines heat lability); (iii) a recombinant of two T4D mutants constructed containing both tdts and frdts genes produced particles whose physical properties indicate that these two molecules physically interact in the baseplate. With regard to phage frd it has been found that two spontaneous revertants each of two different T4D frdts mutants to frd+ not only produced altered dihydrofolate reductases but also formed phage particles with heat sensitivities different from their parents. Properties of T4D particles produced after infection with parental T4D mutants presumed to have a deletion of the td gene and/or the frd gene indicate that these particles still retain some characteristics associated with the presence of both the td and the frd molecules. Furthermore, the particles produced by the deletion mutants have been found to be physically different from the parent particles.  相似文献   
4.
Summary A fragment of Escherichia coli bacteriophage T4D DNA, containing 6.1 Kbp which included the six genes (genes 25, 26, 51, 27, 28 and 29) coding for the tail baseplate central plug has been partially characterized. This DNA fragment was obtained originally by Wilson et al. (1977) by the action of the restriction enzyme EcoRI on a modified form of T4 DNA and was inserted in the pBR322 plasmid and then incorporated into an E. coli K12 strain called RRI. This plasmid containing the phage DNA fragment has now been reisolated and screened for cleavage sites for various restriction endonucleases. Restriction enzymes Bgl 11 and Xbal each attacked one restriction site and the enzyme Hpa 1 attacked two restriction sites on this fragment. The combined digestion of the hybrid plasmid containing the T4 EcoRI DNA fragment conjugated to the pBR322 plasmid with one of these enzymes plus Bam H1 restriction enzyme resulted in the localization of the restriction site for Bgl 11, Xba 1 and Hpa 1. Escherichia coli strain B cells were transformed with this hybrid plasmid and found to have some unexpected properties. E. coli B cells, which are normally restrictive for T4 amber mutants and for T4 temperature sensitive mutants (at 44°) after transformation, were permissive for 25am, 26am and 26Ts, 51am, and 51Ts, 27Ts, and 28Ts T4 mutants. Extracts from the transformed E. coli cells were found in complementation experiments to contain the gene 29 product, as well as the gene 26 product, the gene 51 product, and the gene 27 product. The complementation experiments and the permissiveness of the transformed E. coli B cells to the various conditional lethal mutants clearly showed that the six T4 genes were producing all six gene products in these transformed cells. However, these cells were not permissive for T4 amber mutants in genes 27, 28, and 29. The transformed E. coli B cells, as compared to untransformed cells, were found to have altered outer cell walls which made them highly labile to osmotic shock and to an increased rate of killing by wild type T4 and all T4 amber mutants except for T4 am29. The change in cell walls of the transformed cells has been found to be due to the T4 baseplate genes on the hybrid plasmid, since E. coli B transformed by the pBR322 plasmid alone does not show the increase in osmotic sensitivity.  相似文献   
5.
Three types of reagents were used to determine the structural role and location of the polyglutamate portion of the Escherichia coli T4D bacteriophage baseplate dihydropteroyl hexaglutamate. These reagents were examined for their effect in vitro on some of the final steps in phage baseplate morphogenesis. The reagents were (i) a series of oligopeptides composed solely of glutamic acid residues but with various chemical linkages and chain lengths; (ii) a homogeneous preparation of carboxypeptidase G1, an exopeptidase that hydrolyzes carboxyl-terminal glutamates (or aspartates) from simple oligopeptides, including the gamma-glutamyl bonds on folyl polyglutamates as well as the bond between the carboxyl group of the p-aminobenzoyl moiety and the amino group of the first glutamic acid residue of folic acid; and (iii) antisera prepared against a polyglutamate hapten. All three types of reagent markedly inhibited the attachment of the phage long tail fibers to the baseplate. Other steps in baseplate assembly such as the addition of T4D gene 11 or gene 12 products were not affected by any of these reagents. These results indicate that the polyglutamate portion of the folate is located near the attachment site on the bacteriophage baseplate for the long tail fibers.  相似文献   
6.
The metabolism of Zn2+ in Escherichia coli infected with T4D bacteriophage and various T4D mutants has been examined. E. coli B infected with T4D, and all T4D mutants except T4D 12-, took up zinc ions at a rate identical to that of uninfected cells. E. coli B infected with T4D 12- had a markedly decreased rate of zinc uptake. The incorporation of zinc into proteins of infected cells has also been studied. T4D phage infection was found to shut off the synthesis of all bacterial host zinc metalloproteins while allowing the formation of viral-induced zinc proteins. The amount of zinc incorporated into viral proteins was affected by the absence of various T4D gene products. Cells infected with T4D 12-, and to a much less extent those infected with T4D 29-, incorporated the least amount of zinc into proteins, while cells infected with T4D 11- and T4D 51- incorporated increased amounts of zinc into the zinc metalloproteins. In cells infected with T4D 11- and 51- most of the zinc protein was found to be the product of gene 12. The marked effect of infection of E. coli with T4D 12- on both zinc uptake and zinc incorporation into protein supports the conclusion that T4D gene 12 protein is a zinc metalloprotein. Additionally, these observations have indicated that this metalloprotein interacts with host cell membrane.  相似文献   
7.
The changes in ice nucleation activity of transformed Ina+ Escherichia coli K12 after infection with T4D bacteriophage have been examined. Within 2 min after infection class A nucleation activity (measured at -4 degrees C) fell about 100-1000-fold whilst class B (measured at -5.5 degrees C) and class C (measured at -9 degrees C) nucleation activities increased 50-100-fold and then rapidly decreased. These changes also occurred after interaction with T4D ghost particles or T4D 11-/12- particles. Since ghost particles lack DNA and 11-/12- particles lack short tail fibres, the T4D particles appear to be exerting their effect by the attachment of the phage long tail fibres to the cell. The changes were not influenced by the addition of chloramphenicol.  相似文献   
8.
Three separate classes of bacterial ice nucleation structures   总被引:4,自引:1,他引:3       下载免费PDF全文
Studies of the properties of the ice nucleation structure exposed on the surfaces of various bacteria such as Pseudomonas syringae, Erwinia herbicola, or various strains of Ice+ recombinant Escherichia coli have shown that there are clearly three major related but chemically distinct types of structures on these cells. First, the ability of Ice+ cells to nucleate super-cooled D2O has been examined, and it has been found that this ability (relative to the ability of the same cells to nucleate super-cooled H2O) exhibited three characteristic nucleating patterns. The rarest structure, called class A, is found on only a small fraction of cells in a culture, nucleates H2O at temperatures above -4.4 degrees C, and is an effective nucleator of super-cooled D2O. A second class of structure, called class B, is found on a larger portion of the cells, nucleates H2O between -4.8 and -5.7 degrees C, and is a relatively poor nucleator of super-cooled D2O. The class C structure is found on almost all cells and nucleates at -7.6 degrees C or colder. These three classes of structures were also differentiated by their sensitivities to low concentrations of water-miscible organic solvents such as dioxane or dimethyl sulfoxide. Depending on the specific bacterial strain, the addition of these solvents to bacterial suspensions lowered the nucleation activity of the class A structure by 1,000-fold or more. The nucleation activities of class B structures in the same culture were highly resistant to these compounds and were lowered only by 20 to 40%. The class C structures were more sensitive than Class B structures were, and the nucleation activities decreased 70 to 90%. Finally, the pH sensitivity of these three classes of structures was examined. The class A structure was destroyed in buffers at pH 4.5 lower but was stable in buffers at higher pHs. The class B structure was less sensitive to acidic buffers but was destroyed at pH 5.5 or lower and was stable at higher pHs. However, the class C structure was unaffected by incubation in buffers with pHs of 3.5 to 9.0. Suggestions for the actual nucleation structures of the three classes are proposed.  相似文献   
9.
The characteristics of pure preparations of short-tail fibers of bacteriophage T4 have been studied in the optical and electron microscope. Three main structures were observed: 1) spheres of 8.1 nm diameter; 2) fibers 43 nm long and 3.8 nm thick; and 3) fibers 54 nm long and 3.2 nm thick. Both types of fibers exhibited a regular beaded appearance. The 43-nm fibers were the most abundant structure. During the process of purification of the short-tail fibers, the formation of aggregates was observed each time the material containing the short-tail fibers was dialyzed against saline solutions. These aggregates became increasingly fibrous (as observed in the optical microscope) as the material used was increasingly enriched in short-tail fibers. Finally, most of the aggregates were of the fibrous type when they were formed from a purified preparation of short-tail fibers. In the electron microscope, it was found that the filamentous aggregates were organized in well-defined bundles. The amino acid composition of the highly purified short-tail fibers was also determined. Among the known fibrous proteins, the ones that most resemble the amino acid composition of the short-tail fibers are actin and fibrinogen. These observations are discussed in relation to the T4 short-tail fiber structure and their localization on the hexagonal baseplate of the T4 tail structure.  相似文献   
10.
We investigated the role of the T4D bacteriophage gene 28 product in folate metabolism in infected Escherichia coli cells by using antifolate drugs and a newly devised assay for folyl polyglutamate cleavage activity. Preincubation of host E. coli cells with various sulfa drugs inhibited phage production by decreasing the burst size when the phage particles produced an altered gene 28 product (i.e., after infection under permissive conditions with T4D 28ts or T4D am28). In addition, we found that another folate analog, pyrimethamine, also inhibited T4D 28ts production and T4D 28am production, but this analog did not inhibit wild-type T4D production. A temperature-resistant revertant of T4D 28ts was not sensitive to either sulfa drugs or pyrimethamine. We developed an assay to measure the enzymatic cleavage of folyl polyglutamates. The high-molecular-weight folyl polyglutamate substrate was isolated from E. coli B cells infected with T4D am28 in the presence of labeled glutamic acid and was characterized as a folate compound containing 12 to 14 labeled glutamate residues. Extracts of uninfected bacteria liberated glutamate residues from this substrate with a pH optimum of 8.4 to 8.5. Extracts of bacteriophage T4D-infected E. coli B cells exhibited an additional new folyl polyglutamate cleavage activity with a pH optimum of about 6.4 to 6.5, which was clearly distinguished from the preexisting activity in the uninfected host cells. This new activity was induced in E. coli B cells by infection with wild-type T4D and T4D amber mutants 29, 26, 27, 51, and 10, but it was not induced under nonpermissive conditions by T4D am28 or by T4D 28ts. Mutations in gene 28 affected the properties of the induced cleavage enzyme. Wild-type T4D-induced cleavage activity was not inhibited by pyrimethamine, whereas the T4D 28ts activity induced at a permissive temperature was inhibited by this folate analog. Folyl polyglutamate cleavage activity characteristic of the activity induced in host cells by wild-type T4D or by T4D gene 28 mutants was also found in highly purified preparations of these phage ghost particles. The T4D-induced cleavage activity could be inhibited by antiserum prepared against highly purified phage baseplates. We concluded that T4D infection induced the formation of a new folyl polyglutamate cleavage enzyme and that this enzyme was coded for by T4D gene 28. Furthermore, since this gene product was a baseplate tail plug component which had both its antigenic sites and its catalytic sites exposed on the phage particle, it was apparent that this enzyme formed part of the distal surface of the phage baseplate central tail plug.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号