首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   1篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2016年   2篇
  2015年   2篇
  2013年   8篇
  2012年   3篇
  2011年   2篇
  2010年   4篇
  2009年   3篇
  2008年   2篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2003年   5篇
  2002年   1篇
  2001年   1篇
  1998年   2篇
  1995年   1篇
排序方式: 共有48条查询结果,搜索用时 15 毫秒
1.

Extraintestinal pathogenic Escherichia coli (ExPEC) cause a wide range of clinical diseases such as bacteremia and urinary tract infections. The increase of multidrug resistant ExPEC strains is becoming a major concern for the treatment of these infections and E. coli has been identified as a critical priority pathogen by the WHO. Therefore, the development of vaccines has become increasingly important, with the surface lipopolysaccharide constituting a promising vaccine target. This study presents genetic and structural analysis of clinical urine isolates from Switzerland belonging to the serotype O25. Approximately 75% of these isolates were shown to correspond to the substructure O25B only recently described in an emerging clone of E. coli sequence type 131. To address the high occurrence of O25B in clinical isolates, an O25B glycoconjugate vaccine was prepared using an E. coli glycosylation system. The O antigen cluster was integrated into the genome of E. coli W3110, thereby generating an E. coli strain able to synthesize the O25B polysaccharide on a carrier lipid. The polysaccharide was enzymatically conjugated to specific asparagine side chains of the carrier protein exotoxin A (EPA) of Pseudomonas aeruginosa by the PglB oligosaccharyltransferase from Campylobacter jejuni. Detailed characterization of the O25B-EPA conjugate by use of physicochemical methods including NMR and GC-MS confirmed the O25B polysaccharide structure in the conjugate, opening up the possibility to develop a multivalent E. coli conjugate vaccine containing O25B-EPA.

  相似文献   
2.

Aims

We analysed current carbon (C) stocks in fine root and aboveground biomass of riparian forests and influential environmental parameters on either side of a dike in the Donau-Auen National Park, Austria.

Methods

On both sides of the dike, carbon (C) stock of fine roots (CFR) under four dominant tree species and of aboveground biomass (CAB) were assessed by topsoil cores (0–30 cm) and angle count sampling method respectively (n?=?48). C stocks were modeled, performing boosted regression trees (BRT).

Results

Overall CFR was 2.8 t ha?1, with significantly higher C stocks in diked (DRF) compared to flooded riparian forests (FRF). In contrast to CFR, mean CAB was 123 t ha?1 and lower in DRF compared to FRF. However, dike construction was consistently ruled out as a predictor variable in BRT. CFR was influenced by the distance to the Danube River and the dominant tree species. CAB was mainly influenced by the magnitude of fluctuations in the groundwater table and the distances to the river and the low groundwater table.

Conclusions

Despite pronounced differences in FRF and DRF, we conclude that there is only weak support that dikes directly influence C allocation in floodplain forests within the time scale considered (110 years).  相似文献   
3.

Background and aims

Salinity is an increasing problem for agricultural production worldwide. Understanding how Na+ enters plants is important if reducing Na+ influx, a key component of the regulation of Na+ accumulation in plants and improving salt tolerance of crop plants, is to be achieved. Our previous work indicated that two distinct low-affinity Na+ uptake pathways exist in the halophyte Suaeda maritima. Here, we report the external NaCl concentration at which uptake switches from pathway 1 to pathway 2 and the kinetics of the interaction between external K+ concentration and Na+ uptake and accumulation in S. maritima in order to determine the roles of K+ transporters or channels in low-affinity Na+ uptake.

Methods

Na+ influx, Na+ and K+ accumulations in S. maritima exposed to various concentrations of NaCl (0–200 mM) were analyzed in the absence and presence of the inhibitors TEA and Ba+ (5 mM TEA or 3 mM Ba2+) or KCl (0, 10 or 50 mM).

Results

Our earlier proposal was confirmed and extended that there are two distinct low-affinity Na+ uptake pathways in S. maritima: pathway 1 might be mediated by a HKT-type transporter under low salinity conditions and pathway 2 by an AKT1-type channel or a KUP/HAK/KT type transporter under high salinity conditions. The external NaCl concentration at which two distinct low-affinity Na+ uptake switches from pathway 1 to pathway 2, the ‘turning point’, is between 90 and 95 mM. Over a short period (12 h) of Na+ and K+ treatments, a low concentration of K+ (10 mM) facilitated Na+ uptake by S. maritima under high salinity (100–200 mM NaCl), whether or not the plants had been subjected to a longer (3 d) period of K+ starvation. The kinetics suggests that low concentration of K+ (10 mM) might activate AKT1-type channels or KUP/HAK/KT-type transporters under high salinity (100–200 mM NaCl).

Conclusions

The turning-point of external NaCl concentrations for the two low-affinity Na+ uptake pathways in Suaeda maritima is between 90 and 95 mM. A low concentration of K+ (10 mM) might activate AKT1 or KUP/HAK/KT and facilitate Na+ uptake under high salinity (100–200 mM NaCl). The kinetics of K+ on Na+ uptake and accumulation in S maritima are also consistent with there being two low-affinity Na+ uptake pathways.  相似文献   
4.
5.
Volume Contents     

Volume Contents

Volume Contents  相似文献   
6.
UDP-glucose:glycoprotein glucosyltransferase (GT) is a key component of the glycoprotein-specific folding and quality control system in the endoplasmic reticulum. By exclusively reglucosylating incompletely folded and assembled glycoproteins, it serves as a folding sensor that prolongs the association of newly synthesized glycoproteins with the chaperone-like lectins calnexin and calreticulin. Here, we address the mechanism by which GT recognizes and labels its substrates. Using an improved inhibitor assay based on soluble conformers of pancreatic ribonuclease in its glycosylated (RNase B) and unglycosylated (RNase A) forms, we found that the protein moiety of a misfolded conformer alone is sufficient for specific recognition by GT in vitro. To investigate the relationship between recognition and glucosylation, we tested a variety of glycosylation mutants of RNase S-Protein and an RNase mutant with a local folding defect [RNase C65S, C72S], as well as a series of loop insertion mutants. The results indicated that local folding defects in an otherwise correctly folded domain could be recognized by GT. Only glycans attached to the polypeptide within the misfolded sites were glucosylated.  相似文献   
7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号