首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2007年   1篇
  2005年   2篇
  2004年   1篇
  2002年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
The limited availability of human vascular endothelial cells (ECs) hampers research into EC function whilst the lack of precisely defined culture conditions for this cell type presents problems for addressing basic questions surrounding EC physiology. We aimed to generate endothelial progenitors from human pluripotent stem cells to facilitate the study of human EC physiology, using a defined serum-free protocol. Human embryonic stem cells (hESC-ECs) differentiated under serum-free conditions generated CD34+KDR+ endothelial progenitor cells after 6 days that could be further expanded in the presence of vascular endothelial growth factor (VEGF). The resultant EC population expressed CD31 and TIE2/TEK, took up acetylated low-density lipoprotein (LDL) and up-regulated expression of ICAM-1, PAI-1 and ET-1 following treatment with TNFα. Immunofluorescence studies indicated that a key mediator of vascular tone, endothelial nitric oxide synthase (eNOS), was localised to a perinuclear compartment of hESC-ECs, in contrast with the pan-cellular distribution of this enzyme within human umbilical vein ECs (HUVECs). Further investigation revealed that that the serum-associated lipids, lysophosphatidic acid (LPA) and platelet activating factor (PAF), were the key molecules that affected eNOS localisation in hESC-ECs cultures. These studies illustrate the feasibility of EC generation from hESCs and the utility of these cells for investigating environmental cues that impact on EC phenotype. We have demonstrated a hitherto unrecognized role for LPA and PAF in the regulation of eNOS subcellular localization.  相似文献   
2.
The ability to genetically modify human embryonic stem cells (HESCs) will be critical for their widespread use as a tool for understanding fundamental aspects of human biology and pathology and for their development as a platform for pharmaceutical discovery. Here, we describe a method for the genetic modification of HESCs using electroporation, the preferred method for introduction of DNA into cells in which the desired outcome is gene targeting. This report provides methods for cell amplification, electroporation, colony selection and screening. The protocol we describe has been tested on four different HESC lines, and takes approximately 4 weeks from electroporation to PCR screening of G418-resistant clones.  相似文献   
3.
In Xenopus, the Mix/Bix family of homeobox genes has been implicated in mesendoderm development. Mixl1 is the only known murine member of this family. To examine the role of Mixl1 in murine embryogenesis, we used gene targeting to create mice bearing a null mutation of Mixl1. Homozygous Mixl1 mutant embryos can be distinguished from their littermates by a marked thickening of the primitive streak. By the early somite stage, embryonic development is arrested, with the formation of abnormal head folds, foreshortened body axis, absence of heart tube and gut, deficient paraxial mesoderm, and an enlarged midline tissue mass that replaces the notochord. Development of extra-embryonic structures is generally normal except that the allantois is often disproportionately large for the size of the mutant embryo. In chimeras, Mixl1(-/-) mutant cells can contribute to all embryonic structures, with the exception of the hindgut, suggesting that Mixl1 activity is most crucial for endodermal differentiation. Mixl1 is therefore required for the morphogenesis of axial mesoderm, the heart and the gut during embryogenesis.  相似文献   
4.
The homeobox gene Mixl1 is expressed in the primitive streak of the gastrulating embryo, and marks cells destined to form mesoderm and endoderm. The role of Mixl1 in development of haematopoietic mesoderm was investigated by analysing the differentiation of ES cells in which GFP was targeted to one (Mixl1(GFP/w)) or both (Mixl1(GFP/GFP)) alleles of the Mixl1 locus. In either case, GFP was transiently expressed, with over 80% of cells in day 4 embryoid bodies (EBs) being GFP(+). Up to 45% of Mixl1(GFP/w) day 4 EB cells co-expressed GFP and the haemangioblast marker FLK1, and this doubly-positive population was enriched for blast colony forming cells (BL-CFCs). Mixl1-null ES cells, however, displayed a haematopoietic defect characterised by reduced and delayed Flk1 expression and a decrease in the frequency of haematopoietic CFCs. These data indicated that Mixl1 was required for efficient differentiation of cells from the primitive streak stage to blood. Differentiation of ES cells under serum-free conditions demonstrated that induction of Mixl1- and Flk1-expressing haematopoietic mesoderm required medium supplemented with BMP4 or activin A. In conclusion, this study has revealed an important role for Mixl1 in haematopoietic development and demonstrates the utility of the Mixl1(GFP/w) ES cells for evaluating growth factors influencing mesendodermal differentiation.  相似文献   
5.
6.
Cardiovascular benefits of ubiquinone have been previously demonstrated, and we administered it as a novel therapy in an experimental model of type 2 diabetic nephropathy. db/db and dbH mice were followed for 10 weeks, after randomization to receive either vehicle or ubiquinone (CoQ10; 10mg/kg/day) orally. db/db mice had elevated urinary albumin excretion rates and albumin:creatinine ratio, not seen in db/db CoQ10-treated mice. Renal cortices from db/db mice had lower total and oxidized CoQ10 content, compared with dbH mice. Mitochondria from db/db mice also contained less oxidized CoQ10(ubiquinone) compared with dbH mice. Diabetes-induced increases in total renal collagen but not glomerulosclerosis were significantly decreased with CoQ10 therapy. Mitochondrial superoxide and ATP production via complex II in the renal cortex were increased in db/db mice, with ATP normalized by CoQ10. However, excess renal mitochondrial hydrogen peroxide production and increased mitochondrial membrane potential seen in db/db mice were attenuated with CoQ10. Renal superoxide dismutase activity was also lower in db/db mice compared with dbH mice. Our results suggest that a deficiency in mitochondrial oxidized CoQ10 (ubiquinone) may be a likely precipitating factor for diabetic nephropathy. Therefore CoQ10 supplementation may be renoprotective in type 2 diabetes, via preservation of mitochondrial function.  相似文献   
7.
Human embryonic stem cells (hESCs) have been advanced as a potential source of cells for use in cell replacement therapies. The ability to identify hESCs and their differentiated progeny readily in transplantation experiments will facilitate the analysis of hESC potential and function in vivo. We have generated a hESC line designated 'Envy', in which robust levels of green fluorescent protein (GFP) are expressed in stem cells and all differentiated progeny.  相似文献   
8.
No in vivo data exist about the relationship of circulating granulocyte-macrophage colony stimulating factor (GM-CSF) and soluble adhesion molecules ICAM-1 and VCAM-1 (sICAM-1 and sVCAM-1) to the severity of acute myocardial infarction (AMI) and the pathophysiological events of post-infarction left ventricular dysfunction. We investigated the kinetics of these inflammatory mediators in the plasma of patients with AMI, and correlated the findings with the clinical severity of the disease during the first week of hospitalization as well as the degree of left ventricular dysfunction one month after the AMI. Plasma levels of inflammatory markers were determined in 41 AMI patients (all received thrombolytic treatment) by ELISA assays, serially during the first week of hospitalization and one month after hospital admission. Patients (n = 20) with uncomplicated AMI (Killip class I) were classified as group A, patients (n = 21) with AMI complicated by heart failure manifestations (Killip classes II and III) were classified as group B, while 20 age- and sex-matched volunteers were used as healthy controls. A sustained increase in GM-CSF, sICAM-1 and sVCAM-1 plasma concentrations was observed only in group B during the first week of the study. Patients from group B exhibited significantly higher levels of GM-CSF (P < 0.01), sICAM-1 (P < 0.05) and sVCAM-1 (P < 0.01) than patients from group A and the healthy controls (P < 0.001). In group B patients, significant correlations were observed between the peak of GM-CSF levels and the peak of serum creatine kinase-MB (r = 0.42; P < 0.05), white blood cell counts (r = 0.67; P < 0.001) and LVEF (r =- 0.51; P < 0.01). At one month follow-up, patients (n = 17) with severe post-infarction left ventricular dysfunction (LVEF 35%). Significant correlations were observed between GM-CSF levels and left ventricular end-diastolic volume index (r = 0.55; P < 0.001) or left ventricular end-systolic volume index (r = 0.49; P = 0.001). We have found a significant elevation of plasma GM-CSF and soluble adhesion molecules during the course of AMI, with the highest values in patients with AMI complicated by heart failure manifestations and severe left ventricular dysfunction. These monocyte-related inflammatory mediators may actively contribute to the pathophysiology of the disease and post-infarction cardiac dysfunction.  相似文献   
9.
It has been postulated that chronic exposure to high levels of advanced glycation end products (AGEs), in particular from dietary sources, can impair insulin secretion. In the present study, we investigated the cross-sectional relationship between AGEs and acute insulin secretion during an intravenous glucose tolerance test (IVGTT) and following a 75 g oral glucose tolerance test (OGTT) in healthy humans. We report the cross-sectional association between circulating AGE concentrations and insulin secretory function in healthy humans (17 F: 27 M, aged 30 ± 10 years) with a wide range of BMI (24.6–31.0 kg/m2). Higher circulating concentrations of AGEs were related to increased first phase insulin secretion during IVGTT (r = 0.43; p < 0.05) and lower 2-h glucose concentrations during OGTT (r = ?0.31; p < 0.05). In addition, fasting (r = ?0.36; p < 0.05) and 2-h glucose concentrations were negatively related to circulating levels of soluble receptor for AGE (RAGE) isoforms (r = ?0.39; p < 0.01). In conclusion, in healthy humans, we show a cross-sectional association between advanced glycation end products and acute insulin secretion during glucose tolerance testing.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号