首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2022年   1篇
  2021年   2篇
  2016年   1篇
排序方式: 共有4条查询结果,搜索用时 62 毫秒
1
1.

Aim

This study explores clinical outcome in cytochrome P450 2C19 (CYP2C19)-related poor metaboliser patients treated with either clopidogrel or prasugrel after percutaneous coronary intervention (PCI) and investigates whether this could be cost-effective.

Methods and results

This single-centre, observational study included 3260 patients scheduled for elective PCI between October 2010 and June 2013 and followed for adverse cardiovascular events until October 2014. Post PCI, CYP2C19 poor metaboliser patients were treated with clopidogrel or prasugrel, in addition to aspirin. In total, 32 poor metabolisers were treated with clopidogrel and 41 with prasugrel. The number of adverse cardiovascular events, defined as death from cardiovascular cause, myocardial infarction, stent thrombosis, every second visit to the catheterisation room for re-PCI in the same artery, or stroke, within 1.5 years of PCI, was significantly higher in the CYP2C19 poor metaboliser group treated with clopidogrel (n = 10, 31?%) compared with the poor metaboliser group treated with prasugrel (n = 2, 5?%) (p = 0.003). Costs per gained quality-adjusted life years (QALY) were estimated, showing that genotype-guided post-PCI treatment with prasugrel could be cost-effective with less than € 10,000 per gained QALY.

Conclusion

This study provides evidence that for CYP2C19-related poor metabolisers prasugrel may be more effective than clopidogrel to prevent major adverse cardiovascular events after PCI and this approach could be cost-effective.
  相似文献   
2.
Journal of Biological Physics - The quality and strength of drug and albumin interaction affecting the drug-free concentration and physiological activity are important issues in pharmacokinetic...  相似文献   
3.
Neurochemical Research - Alzheimer’s disease (AD) is associated with neural oxidative stress and inflammation, and it is assumed to affect more women than men with unknown mechanisms....  相似文献   
4.
This article is a scoping review of the studies that assessed the effect of mechanical forces on the behavior of dental stem cells (DSCs). PubMed and Scopus searches were done for in-vitro studies evaluating the effect of tension, hydrostatic pressure (i.e., the pressure applied through an incompressible fluid), compression, simulated microgravity, and vibration on DSCs. The following factors were analyzed: osteogenic/odontogenic differentiation, proliferation, adhesion and migration. Articles were reviewed according to the Preferred Reporting Items for Systematic Reviews extension for scoping reviews (PRISMA-ScR) guideline. Included studies were evaluated based on the modified Consolidated Standards of Reporting Trials (CONSORT). A total of 18 studies published from 2008–2019 were included. Nine studies were focusing on Periodontal ligament Stem Cells (PDLSCs), eight studies on Dental Pulp Stem Cells (DPSCs) and one study on Stem Cells from Apical Papilla (SCAP). Results showed that tension, three-dimensional stress and simulated microgravity promoted the proliferation and osteogenic differentiation of PDLSCs. DPSCs proliferation increased after microgravity and tension exertion. In addition, dynamic hydrostatic pressure and compression promoted odontogenic differentiation of DPSCs. Besides, mechanical stimuli increased the osteogenic differentiation of DPSCs. One study analyzed the effect of carrier features on the response of DSCs to 3D-stress and showed that cells cultivated on scaffolds with 30% bioactive glass (BAG) had the highest osteogenic differentiation compared to other ratios of BAG. It has been shown that increasing the duration of tension (i.e., from 3 h to 24 h force application) enhanced the positive effect of force application on the osteogenic differentiation of DSCs. In conclusion, all types of mechanical forces except uniaxial tension increased the osteogenic/odontogenic differentiation of DSCs. In addition, the effect of mechanical stimulation on the proliferation of DSCs differs based on the type of stem cells and mechanical force.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号