首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   1篇
  2021年   1篇
  2020年   2篇
  2015年   2篇
  2014年   1篇
  2013年   3篇
  2010年   2篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2002年   2篇
  1998年   1篇
  1960年   1篇
排序方式: 共有20条查询结果,搜索用时 15 毫秒
1.
The molecular mechanisms of DNA recognition and modification by EcoRII DNA methyltransferase (M.EcoRII) were studied using 14-mer substrate analogs containing 2-aminopurine or 1′,2′-dideoxy-D-ribofuranose in the M.EcoRII recognition site. The efficiency of DNA binding and methylation depended on the position of a modified nucleoside residue in the recognition site. A structural model of M.EcoRII in complex with substrate DNA and the cofactor analog S-adenosyl-L-homocysteine (AdoHcy) was constructed using the available crystal structures of M.Hha and M.HaeIII and the recent Frankenstein’s monster approach. The amino acid residues interacting with DNA were predicted based on the model. In addition, theoretical and experimental findings made it possible to predict the groups of atoms of the heterocyclic bases of the M.EcoRII recognition site that are presumably involved in the interactions with the enzyme.  相似文献   
2.
Abstract

Prokaryotic DNA methyltransferase M. SssI recognizes and methylates C5 position of the cytosine residue within the CG dinucleotides in DNA. It is an excellent model for studying the mechanism of interaction between CG-specific eukaryotic methyltransferases and DNA. We have built a structural model of M.SssI in complex with the substrate DNA and its analogues as well as the cofactor analogue S-adenosyl-L-homocysteine (AdoHcy) using the previously solved structures of M.HhaI and M.HaeIII as templates. The model was constructed according to the recently developed “FRankenstein's monster” approach. Based on the model, amino acid residues taking part in cofactor binding, target recognition and catalysis were predicted. We also modeled covalent modification of the DNA substrate and studied its influence on protein-DNA interactions.  相似文献   
3.
Affinity modification of EcoRII DNA methyltransferase (M x EcoRII) by DNA duplexes containing oxidized 2'-O-beta-D-ribofuranosylcytidine (Crib*) or 1-(beta-D-galactopyranosyl)thymine (Tgal*) residues was performed. Cross-linking yields do not change irrespective of whether active Crib* replaces an outer or an inner (target) deoxycytidine within the EcoRII recognition site. Chemical hydrolysis of M x EcoRII in the covalent cross-linked complex with the Tgal*-substituted DNA indicates the region Gly268-Met391 of the methylase that is likely to interact with the DNA sugar-phosphate backbone. Both specific and non-specific DNA interact with the same M x EcoRII region. Our results support the theoretically predicted DNA binding region of M x EcoRII.  相似文献   
4.
5.
A population of Stratiomys japonica, a species belonging to the family Stratiomyidae (Diptera), common name ‘soldier flies’, occurs in a hot volcanic spring, which is apparently among the most inhospitable environments for animals because of chemical and thermal conditions. Larvae of this species, which naturally often experience temperatures more than 40 °C, have constitutively high concentrations of the normally inducible heat-shock protein Hsp70, but very low level of corresponding mRNA. Larvae of three other species of the same family, Stratiomys singularior, Nemotelus bipunctatus and Oxycera pardalina, are confined to different type semi-aquatic habitats with contrasting thermal regime. However, all of them shared the same pattern of Hsp70 expression. Interestingly, heat-shock treatment of S. japonica larvae activates heat-shock factor and significantly induces Hsp70 synthesis, whereas larvae of O. pardalina, a species from constant cold environment, produce significantly less Hsp70 in response to heat shock. Adults of the four species also exhibit lower, but detectable levels of Hsp70 without heat shock. Larvae of all species studied have very high tolerance to temperature stress in comparison with other Diptera species investigated, probably representing an inherent adaptive feature of all Stratiomyidae enabling successful colonization of highly variable and extreme habitats.  相似文献   
6.
7.
Prokaryotic DNA methyltransferase M.SssI recognizes and methylates C5 position of the cytosine residue within the CG dinucleotides in DNA. It is an excellent model for studying the mechanism of interaction between CG-specific eukaryotic methyltransferases and DNA. We have built a structural model of M.SssI in complex with the substrate DNA and its analogues as well as the cofactor analogue S-adenosyl-L-homocysteine (AdoHcy) using the previously solved structures of M.HhaI and M.HaeIII as templates. The model was constructed according to the recently developed "FRankenstein's monster" approach. Based on the model, amino acid residues taking part in cofactor binding, target recognition and catalysis were predicted. We also modeled covalent modification of the DNA substrate and studied its influence on protein-DNA interactions.  相似文献   
8.
9.
10.
The phylogeny of selected genera from four subfamilies of fungus gnats (Diptera: Mycetophilidae) – Manotinae, Leiinae, Sciophilinae and Gnoristinae (including Metanepsiini) – is reconstructed based on the combined analysis of five mitochondrial (12S, 16S, COI, COII, cytB) and two nuclear (28S, ITS2) gene markers. Results of the different analyses all support Manotinae as a monophyletic group, with Leiinae as the sister group. Allactoneura DeMeijere is nested in the monophyletic and strongly supported clade of Leiinae. The tribe Metanepsiini is revealed as paraphyletic and the genera Metanepsia Edwards and Chalastonepsia Søli do not appear to be closely related. The genera Docosia Winnertz, Ectrepesthoneura Enderlein, Novakia Strobl and Syntemna Winnertz were placed with a group of genera included traditionally in the Gnoristinae. The monophyly of Dziedzickia Johannsen and Phthinia Winnertz is not supported. The genera of Sciophilinae (excluding Paratinia Mik but including Eudicrana Loew) form a monophyletic group in the Bayesian model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号