首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  2022年   1篇
  2021年   2篇
  2014年   1篇
  2010年   1篇
  2009年   2篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
The formation of three oxidative DNA 5-methylcytosine (5mC) modifications (oxi-mCs)—5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC)—by the TET/JBP family of dioxygenases prompted intensive studies of their functional roles in mammalian cells. However, the functional interplay of these less abundant modified nucleotides in other eukaryotic lineages remains poorly understood. We carried out a systematic study of the content and distribution of oxi-mCs in the DNA and RNA of the basidiomycetes Laccaria bicolor and Coprinopsis cinerea, which are established models to study DNA methylation and developmental and symbiotic processes. Quantitative liquid chromatography–tandem mass spectrometry revealed persistent but uneven occurrences of 5hmC, 5fC and 5caC in the DNA and RNA of the two organisms, which could be upregulated by vitamin C. 5caC in RNA (5carC) was predominantly found in non-ribosomal RNA, which potentially includes non-coding, messenger and small RNA species. Genome-wide mapping of 5hmC and 5fC using the single CG analysis techniques hmTOP-seq and foTOP-seq pointed at involvement of oxi-mCs in the regulation of gene expression and silencing of transposable elements. The implicated diverse roles of 5mC and oxi-mCs in the two fungi highlight the epigenetic importance of the latter modifications, which are often neglected in standard whole-genome bisulfite analyses.  相似文献   
2.
Following menopause, body fat is redistributed from peripheral to central depots. This may be linked to the age related decrease in estrogen levels. We hypothesized that estrogen supplementation could counteract this fat redistribution through tissue‐specific modulation of glucocorticoid exposure. We measured fat depot masses and the expression and activity of the glucocorticoid‐activating enzyme 11β‐hydroxysteroid dehydrogenase type 1 (11βHSD1) in fat and liver of ovariectomized female rats treated with or without 17β‐estradiol. 11βHSD1 converts inert cortisone, or 11‐dehydrocorticosterone in rats into active cortisol and corticosterone. Estradiol‐treated rats gained less weight and had significantly lower visceral adipose tissue weight than nontreated rats (P < 0.01); subcutaneous adipose weight was unaltered. In addition, 11βHSD1 activity/expression was downregulated in liver and visceral, but not subcutaneous, fat of estradiol‐treated rats (P < 0.001 for both). This downregulation altered the balance of 11βHSD1 expression and activity between adipose tissue depots, with higher levels in subcutaneous than visceral adipose tissue of estradiol‐treated animals (P < 0.05 for both), opposite the pattern in ovariectomized rats not treated with estradiol (P < 0.001 for mRNA expression). Thus, estrogen modulates fat distribution, at least in part, through effects on tissue‐specific glucocorticoid metabolism, suggesting that estrogen replacement therapy could influence obesity related morbidity in postmenopausal women.  相似文献   
3.
Sulfate-reducing bacteria Candidatus Desulforudis audaxviator (CDA) were originally discovered in deep fracture fluids accessed via South African gold mines and have since been found in geographically widespread deep subsurface locations. In order to constrain models for subsurface microbial evolution, we compared CDA genomes from Africa, North America and Eurasia using single cell genomics. Unexpectedly, 126 partial single amplified genomes from the three continents, a complete genome from of an isolate from Eurasia, and metagenome-assembled genomes from Africa and Eurasia shared >99.2% average nucleotide identity, low frequency of SNP’s, and near-perfectly conserved prophages and CRISPRs. Our analyses reject sample cross-contamination, recent natural dispersal, and unusually strong purifying selection as likely explanations for these unexpected results. We therefore conclude that the analyzed CDA populations underwent only minimal evolution since their physical separation, potentially as far back as the breakup of Pangea between 165 and 55 Ma ago. High-fidelity DNA replication and repair mechanisms are the most plausible explanation for the highly conserved genome of CDA. CDA presents a stark contrast to the current model organisms in microbial evolutionary studies, which often develop adaptive traits over far shorter periods of time.Subject terms: Environmental microbiology, Molecular evolution, Bacterial genetics  相似文献   
4.
5.
The glucocorticoid activating enzyme 11β‐hydroxysteroid dehydrogenase type 1 (11βHSD1) is of major interest in obesity‐related morbidity. Alterations in tissue‐specific cortisol levels may influence lipogenetic and gluco/glyceroneogenetic pathways in fat and liver. We analyzed the expression and activity of 11βHSD1 as well as the expression of phosphoenolpyruvate carboxykinase (PEPCK), sterol regulatory element binding protein (SREBP), and fatty acid synthase (FAS) in adipose and liver and investigated putative associations between 11βHSD1 and energy metabolism genes. A total of 33 obese women (mean BMI 44.6) undergoing gastric bypass surgery were enrolled. Subcutaneous adipose tissue (SAT), omental fat (omental adipose tissue (OmAT)), and liver biopsies were collected during the surgery. 11βHSD1 gene expression was higher in SAT vs. OmAT (P = 0.013), whereas the activity was higher in OmAT (P = 0.009). The SAT 11βHSD1 correlated with waist circumference (P = 0.045) and was an independent predictor for the OmAT area in a linear regression model. Energy metabolism genes had AT depot–specific expression; higher leptin and SREBP in SAT than OmAT, but higher PEPCK in OmAT than SAT. The expression of 11βHSD1 correlated with PEPCK in both AT depots (P = 0.05 for SAT and P = 0.0001 for OmAT). Hepatic 11βHSD1 activity correlated negatively with abdominal adipose area (P = 0.002) and expression positively with PEPCK (P = 0.003). In human obesity, glucocorticoid regeneration in the SAT is associated with central fat accumulation indicating that the importance of this specific fat depot is underestimated. Central fat accumulation is negatively associated with hepatic 11βHSD1 activity. A disturbance in peripheral glucocorticoid metabolism is associated with changes in genes involved in fatty acid (FA) recycling in adipose tissue (AT).  相似文献   
6.

Aims

A high consumption of fructose leads not only to peripheral changes in insulin sensitivity and vascular function, but also to central changes in several brain regions. Given the role of the endogenous cannabinoid system in the control of energy intake, we undertook a pilot study to determine whether a high fructose diet produced changes in brain CB1 receptor functionality.

Main methods

Male rats given access ad libitum to normal chow were given either water, glucose or fructose solutions to drink. CB1 receptor functionality was measured autoradiographically as the increase in [35S]GTPγS binding produced by the agonist CP55,940.

Key findings

Seven regions were investigated: the prefrontal cortex, caudate–putamen, hippocampal CA1–CA3, dentate gyrus, amygdala, and dorsomedial and ventromedial hypothalami. Two-way robust Wilcoxon analyses for each brain region indicated that the dietary treatment did not produce significant main effects upon agonist-stimulated [35S]GTPγS binding in any of the regions, in contrast to a significant main effect upon both leptin and adiponectin levels in the blood. However, a MANCOVA of the data controlling for leptin and adiponectin as co-variables identified a significant effect of glucose and fructose treatment for five weeks upon the [35S]GTPγS response in the ventromedial hypothalamus, a region of importance for regulation of appetite.

Significance

It is concluded from this pilot study that palatable solutions do not produce overt changes in brain CB1 receptor functionality, although subtle changes in discrete brain regions may occur.  相似文献   
7.
With age and menopause there is a shift in adipose distribution from gluteo-femoral to abdominal depots in women. Associated with this redistribution of fat are increased risks of type 2 diabetes and cardiovascular disease. Glucocorticoids influence body composition, and 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1) which converts inert cortisone to active cortisol is a putative key mediator of metabolic complications in obesity. Increased 11βHSD1 in adipose tissue may contribute to postmenopausal central obesity. We hypothesized that tissue-specific 11βHSD1 gene expression and activity are up-regulated in the older, postmenopausal women compared to young, premenopausal women. Twenty-three pre- and 23 postmenopausal, healthy, normal weight women were recruited. The participants underwent a urine collection, a subcutaneous adipose tissue biopsy and the hepatic 11βHSD1 activity was estimated by the serum cortisol response after an oral dose of cortisone. Urinary (5α-tetrahydrocortisol+5β-tetrahydrocortisol)/tetrahydrocortisone ratios were higher in postmenopausal women versus premenopausal women in luteal phase (P<0.05), indicating an increased whole-body 11βHSD1 activity. Postmenopausal women had higher 11βHSD1 gene expression in subcutaneous fat (P<0.05). Hepatic first pass conversion of oral cortisone to cortisol was also increased in postmenopausal women versus premenopausal women in follicular phase of the menstrual cycle (P<0.01, at 30 min post cortisone ingestion), suggesting higher hepatic 11βHSD1 activity. In conclusion, our results indicate that postmenopausal normal weight women have increased 11βHSD1 activity in adipose tissue and liver. This may contribute to metabolic dysfunctions with menopause and ageing in women.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号