首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  1995年   1篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
1.
A new class of NO-donor phenol derivatives is described. The products were obtained by joining appropriate phenols with either nitrooxy or 3-phenylsulfonylfuroxan-4-yloxy moieties. All the compounds proved to inhibit the ferrous salt/ascorbate induced lipidic peroxidation of membrane lipids of rat hepatocytes. They were also capable of dilating rat aorta strips precontracted with phenylephrine.  相似文献   
2.
Rad51 and Rad54 are key proteins that collaborate during homologous recombination. Rad51 forms a presynaptic filament with ATP and ssDNA active in homology search and DNA strand exchange, but the precise role of its ATPase activity is poorly understood. Rad54 is an ATP-dependent dsDNA motor protein that can dissociate Rad51 from dsDNA, the product complex of DNA strand exchange. Kinetic analysis of the budding yeast proteins revealed that the catalytic efficiency of the Rad54 ATPase was stimulated by partial filaments of wild-type and Rad51-K191R mutant protein on dsDNA, unambiguously demonstrating that the Rad54 ATPase activity is stimulated under these conditions. Experiments with Rad51-K191R as well as with wild-type Rad51-dsDNA filaments formed in the presence of ATP, ADP or ATP-γ-S showed that efficient Rad51 turnover from dsDNA requires both the Rad51 ATPase and the Rad54 ATPase activities. The results with Rad51-K191R mutant protein also revealed an unexpected defect in binding to DNA. Once formed, Rad51-K191R-DNA filaments appeared normal upon electron microscopic inspection, but displayed significantly increased stability. These biochemical defects in the Rad51-K191R protein could lead to deficiencies in presynapsis (filament formation) and postsynapsis (filament disassembly) in vivo.  相似文献   
3.
GM2 ganglioside in the brain increased during ethanol-induced acute apoptotic neurodegeneration in 7-day-old mice. A small but a significant increase observed 2 h after ethanol exposure was followed by a marked increase around 24 h. Subcellular fractionation of the brain 24 h after ethanol treatment indicated that GM2 increased in synaptic and non-synaptic mitochondrial fractions as well as in a lysosome-enriched fraction characteristic to the ethanol-exposed brain. Immunohistochemical staining of GM2 in the ethanol-treated brain showed strong punctate staining mainly in activated microglia, in which it partially overlapped with staining for LAMP1, a late endosomal/lysosomal marker. Also, there was weaker neuronal staining, which partially co-localized with complex IV, a mitochondrial marker, and was augmented in cleaved caspase 3-positive neurons. In contrast, the control brain showed only faint and diffuse GM2 staining in neurons. Incubation of isolated brain mitochondria with GM2 in vitro induced cytochrome c release in a manner similar to that of GD3 ganglioside. Because ethanol is known to trigger mitochondria-mediated apoptosis with cytochrome c release and caspase 3 activation in the 7-day-old mouse brain, the GM2 elevation in mitochondria may be relevant to neuroapoptosis. Subsequently, activated microglia accumulated GM2, indicating a close relationship between GM2 and ethanol-induced neurodegeneration.  相似文献   
4.
Tomoregulin (TR)2 is a transmembrane protein predominantly expressed in brain. It has a unique extracellular domain, containing epidermal growth factor-like and follistatin-like modules. The ectodomain is released from the cell surface, and thought to function as a neurotrophic factor and dendritogenic agent. During CNS development and in the neuronal storage disease GM2 gangliosidosis, which is characterized by ectopic dendrites, the TR2 ectodomain is present in neuronal nuclei where it may function in dendrite initiation. Data presented here demonstrate that TR2 is found extensively in Alzheimer's disease (AD) plaques. Confocal microscopy shows that TR2 is present throughout plaques. Interestingly, TR2 is absent from plaques in the presenilin-1/amyloid precursor protein mouse model of AD. From these data, and what is known about TR2, it is hypothesized that TR2 may participate in amyloid plaque formation and contribute to the pathogenesis of AD. The human TR2 gene is located on chromosome 2q32.3, near a locus linked to Parkinson's disease. TR2 is reported to be a trophic factor for dopaminergic mesencephalic neurons.  相似文献   
5.
GM2 ganglioside, although scarce in normal adult brain, is the predominant ganglioside accumulating in several types of lysosomal disorders, most notably Tay-Sachs disease. Pyramidal neurons of cerebral cortex in Tay-Sachs, as well as many other types of neuronal storage disorders, are known to exhibit a phenomenon believed unique to storage disorders: growth of ectopic dendrites. Recent studies have shown that a common metabolic abnormality shared by storage diseases with ectopic dendrite growth is the abnormal accumulation of GM2 ganglioside. The correlation between increased levels of GM2 and the presence of ectopic dendrites has been found in both ganglioside and nonganglioside storage disorders, the latter including sphingomyelin-cholesterol lipidosis, mucopolysaccharidosis, and -mannosidosis. Quantitative HPTLC analysis has shown that increases in GM2 occur in proportion to the incidence of ectopic dendrite growth, whereas, other gangliosides, including GM1, lack similar increases. Immunocytochemical studies of all nonganglioside storage diseases which exhibit ectopic dendritogenesis have revealed heightened GM2 ganglioside-immunoreactivity in the cortical pyramidal cell population, whereas neurons in normal adult brain exhibit little or no staining for this ganglioside. Further, studies examining disease development have consistently shown that accumulation of GM2 gangliosideprecedes growth of ectopic dendrites, indicating that it is not simply occurring secondary to new membrane production. These findings have prompted an examination for a similar relationship between GM2 ganglioside and dendritogenesis in cortical neurons of normal developing brain. Results show that GM2 ganglioside-immunoreactivity is consistently elevated in immature neurons during the period when they are undergoing active dendritic initiation, but this staining diminishes dramatically as the dendritic tress of these cells mature. Collectively, these studies on diseased and normal brain offer compelling evidence that GM2 ganglioside plays a pivotal role in the regulation of dendritogenesis in cortical pyramidal neurons.Special issue dedicated to Dr. Leon S. Wolfe.  相似文献   
6.
Lysosomal diseases are a family of over 50 disorders caused by defects in proteins critical for normal function of the endosomal/lysosomal system and characterized by complex pathogenic cascades involving progressive dysfunction of many organ systems, most notably the brain. Evidence suggests that compromise in lysosomal function is highly varied and leads to changes in multiple substrate processing and endosomal signalling, in calcium homoeostasis and endoplasmic reticulum stress, and in autophagocytosis and proteasome function. Neurons are highly vulnerable and show abnormalities in perikarya, dendrites and axons, often in ways seemingly unrelated to the primary lysosomal defect. A notable example is NAD (neuroaxonal dystrophy), which is characterized by formation of focal enlargements (spheroids) containing diverse organelles and other components consistent with compromise of retrograde axonal transport. Although neurons may be universally susceptible to NAD, GABAergic neurons, particularly Purkinje cells, appear most vulnerable and ataxia and related features of cerebellar dysfunction are a common outcome. As NAD is found early in disease and thus may be a contributor to Purkinje cell dysfunction and death, understanding its link to lysosomal compromise could lead to therapies designed to prevent its occurrence and thereby ameliorate cerebellar dysfunction.  相似文献   
7.
Rad54 protein is a Snf2-like ATPase with a specialized function in the recombinational repair of DNA damage. Rad54 is thought to stimulate the search of homology via formation of a specific complex with the presynaptic Rad51 filament on single-stranded DNA. Herein, we address the interaction of Rad54 with Rad51 filaments on double-stranded (ds) DNA, an intermediate in DNA strand exchange with unclear functional significance. We show that Saccharomyces cerevisiae Rad54 exerts distinct modes of ATPase activity on partially and fully saturated filaments of Rad51 protein on dsDNA. The highest ATPase activity is observed on dsDNA containing short patches of yeast Rad51 filaments resulting in a 6-fold increase compared with protein-free DNA. This enhanced ATPase mode of yeast Rad54 can also be elicited by partial filaments of human Rad51 protein but to a lesser extent. In contrast, the interaction of Rad54 protein with duplex DNA fully covered with Rad51 is entirely species-specific. When yeast Rad51 fully covers dsDNA, Rad54 protein hydrolyzes ATP in a reduced mode at 60-80% of its rate on protein-free DNA. Instead, saturated filaments with human Rad51 fail to support the yeast Rad54 ATPase. We suggest that the interaction of Rad54 with dsDNA-Rad51 complexes is of functional importance in homologous recombination.  相似文献   
8.
The brain contains numerous mononuclear phagocytes called microglia. These cells express the transmembrane tyrosine kinase receptor for the macrophage growth factor colony stimulating factor-1 (CSF-1R). Using a CSF-1R-GFP reporter mouse strain combined with lineage defining antibody staining we show in the postnatal mouse brain that CSF-1R is expressed only in microglia and not neurons, astrocytes or glial cells. To study CSF-1R function we used mice homozygous for a null mutation in the Csflr gene. In these mice microglia are >99% depleted at embryonic day 16 and day 1 post-partum brain. At three weeks of age this microglial depletion continues in most regions of the brain although some contain clusters of rounded microglia. Despite the loss of microglia, embryonic brain development appears normal but during the post-natal period the brain architecture becomes perturbed with enlarged ventricles and regionally compressed parenchyma, phenotypes most prominent in the olfactory bulb and cortex. In the cortex there is increased neuronal density, elevated numbers of astrocytes but reduced numbers of oligodendrocytes. Csf1r nulls rarely survive to adulthood and therefore to study the role of CSF-1R in olfaction we used the viable null mutants in the Csf1 (Csf1(op)) gene that encodes one of the two known CSF-1R ligands. Food-finding experiments indicate that olfactory capacity is significantly impaired in the absence of CSF-1. CSF-1R is therefore required for the development of microglia, for a fully functional olfactory system and the maintenance of normal brain structure.  相似文献   
9.
Enzymes that form transient DNA–protein covalent complexes are targets for several potent classes of drugs used to treat infectious disease and cancer, making it important to establish robust and rapid procedures for analysis of these complexes. We report a method for isolation of DNA–protein adducts and their identification and quantification, using techniques compatible with high-throughput screening. This method is based on the RADAR assay for DNA adducts that we previously developed (Kiianitsa and Maizels (2013) A rapid and sensitive assay for DNA–protein covalent complexes in living cells. Nucleic Acids Res., 41:e104), but incorporates three key new steps of broad applicability. (i) Silica-assisted ethanol/isopropanol precipitation ensures reproducible and efficient recovery of DNA and DNA–protein adducts at low centrifugal forces, enabling cell culture and DNA precipitation to be carried out in a single microtiter plate. (ii) Rigorous purification of DNA–protein adducts by a procedure that eliminates free proteins and free nucleic acids, generating samples suitable for detection of novel protein adducts (e.g. by mass spectroscopy). (iii) Identification and quantification of DNA–protein adducts by direct ELISA assay. The ELISA-based RADAR assay can detect Top1–DNA and Top2a–DNA adducts in human cells, and gyrase–DNA adducts in Escherichia coli. This approach will be useful for discovery and characterization of new drugs to treat infectious disease and cancer, and for development of companion diagnostics assays for individualized medicine.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号