首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  2015年   1篇
  2000年   1篇
  1982年   1篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Here we describe the gross and microscopic findings of naturally occurring, β-hemolytic Escherichia coli peritonitis in B6.129-Myd88tm1Aki male and female mice. Over approximately 5 mo, 10 homozygous mutant mice deficient in myeloid differentiation factor 88 (C57BL/6 strain; male and female) that had not been used in research protocols developed rapid-onset abdominal swelling associated with copious viscous ascites. Each mouse developed an anterior peritonitis, primarily involving the parietal peritoneum and the visceral surface of the spleen, liver, diaphragm, and stomach. Inflammation was confined to the organ surfaces, with no indication of septicemia or grossly apparent gastrointestinal perforation or other tissue compromise that would initiate peritonitis. Peritonitis was likely attributable to compromised antibacterial innate immunity; cohoused, similarly immunodeficient littermates did not develop similar clinical signs. An unusual finding in all cases was mesothelial cell hyperplasia and hypertrophy. Although the underlying innate immune deficiency accounts for much of the observed pathology, the remarkable mesothelial cell morphology and the episodic nature of the peritonitis in some littermates and not others remain unexplained.Abbreviations: MyD88, myeloid differentiation response 88; TLR, Toll-like receptorMice deficient in myeloid differentiation factor 88 (myD88) are commonly studied in immunologic research as models of various diseases, including inflammatory bowel disease and diabetes.2,3 MyD88 is a key signal transduction molecule for most of the Toll-like receptors (TLR) and IL1 family receptors, initiating cytokine release essential for effective innate immunity.18 The loss of this adapter protein impairs production of IL1, IL6, IL18, macrophage inhibitory proteins 1 and 2, and various chemokines.1,12,14 Knockout mutant mice are especially susceptible to gram-negative bacteria, because TLR4, which triggers signaling through MyD88, mediates responses to LPS.7,17 These immunologic mutants are common in research animal colonies, but their development of clinical signs and lesions consistent with Escherichia coli peritonitis, which arose at different times and affected only some of the immunodeficient mice, was previously unknown.  相似文献   
2.
The complexes of T2 DNA with RNA polymerase of Escherichia coli were studied by two methods: kinetic formaldehyde method with preliminary fixation of complexes with low formaldehyde concentrations, and electron microscopy. For electron-microscopic investigations the effect of different conditions of formaldehyde fixation for DNA-RNA-polymerase complexes was studied and optimal fixation conditions were found. The suggested fixation method for DNA-RNA-polymerase complexes allows investigation of RNA polymerase molecule distribution on DNA in a wide range of conditions (ionic strength of the solution, weight ration of enzyme to DNA etc.). The comparison of the concentration of RNA polymerase molecules bound to DNA, determined by electron microscopy, and the concentration of defects in DNA as determined by the kinetic formaldehyde method, showed their coincidence. The electron-microscopic procedure was used to make maps of RNA polymerase distribution on T7 DNA. A correlation between the binding regions of the enzyme and the genetic map of early DNA T7 region was found.  相似文献   
3.
E. coli DNA dependent RNA polymerase was modified by diethylpyrocarbonate. Binding to a double-stranded DNA and unwinding of the DNA at the enzyme binding site by the modified enzyme were examined. It was found that RNA polymerase reversibly lost the ability to unwind DNA helix as well as the RNA synthetic activity when 9 to 11 histidyl residues of the enzyme were modified. In addition ot modification of the most reactive sulfhydryl or amino groups of the enzyme accompanying histidyl residues modification results in irreversible decrease of the salt concentration which is necessary to remove the enzyme from DNA cellulose column. Further modification of the less reactive sulfhydryl or amino groups leads to irreversible loss of the DNA binding ability and to the enzyme structure alteration.  相似文献   
4.
Dissociation kinetics of triplexes formed by molecules of peptide nucleic acid (PNA) and DNA have been studied. The complexes consisted of oligomeric PNA containing 10 thymine bases and the dA(10) target incorporated in single-stranded (ssDNA) or double-stranded DNA (dsDNA). Their dissociation was followed by means of the gel mobility shift assay at various temperatures and sodium ion concentrations. In all experiments, the dissociation kinetics of triplexes were exponential; the effective lifetime of a triplex, tau, depended on temperature in accordance with the Arrhenius law. The tau values for T(10) PNA complexes with ss- and dsDNA were equal within the accuracy of experiments. The activation energy, U, value for T(10) PNA-DNA complexes did not change when the NaCl concentration was increased from 50 to 200 or 600 mM. Conversely, the tau values decreased with the increase in NaCl concentration. The equal lifetimes of the T(10) PNA-DNA triplexes containing ss- and dsDNA suggest that the loop formed in dsDNA does not noticeably affect the triplex structure. The decrease in the triplex lifetime tau with an increase in ionic strength was accounted for by the fact that the PNA backbone is neutral. The lack of relationship between the activation energy of dissociation and salt concentration suggests that the dissociation enthalpy does not depend on the ionic strength. Thus, the effect of ionic strength on the lifetime is entropic by its nature. Contrary to this, for complexes of ssDNA with bis-PNA 1743, which also consists of 10 thymine bases but contains 2 additional positive charges inside the sequence in 1 of the PNA arms, an increase of the dissociation enthalpy at low salt concentration was observed. We suggest that this effect is a result of a direct electrostatic interaction of the positive charges of the PNA with the DNA backbone. Finally, our results allow an estimate of the lifetime of a 10-mer triplex invasion complex in dsDNA at 37 degrees C in excess of several hundred days.  相似文献   
5.
A formaldehyde-produced fixation of defects caused by a despiralizing action of a protein was studied in the case of DNA-RNAase A complex. The concentration of the defects fixed was measured by kinetic formaldehyde method (KF-method). It was shown that following processes take place in the complex in the presence of formaldehyde: (a) fixation of defects; (b) unwinding of DNA; (c) inactivation of the protein. The rates of all these processes depend on the concentration of formaldehyde, phi. At formaldehyde concentrations above some critical value phic the protein is inactivated before the defects are fixed. At phi less than phic the protein inactivation proceeds more slowly than the fixation of defects; at sufficiently low formaldehyde concentration no inactivation of protein occurs practically during the fixation time (20 min). The number of new defects formed during the time of fixation is linear with the formaldehyde concentration in the region where no inactivation of the protein occurs. Therefore the initial concentration of defects can be determined through an extrapolation to zero concentration of formaldehyde. On the basis of the data obtained a method is proposed for the evaluation of the number of defects in DNA caused by the despiralizing action of proteins. A model is proposed describing the behaviour of the complexes of DNA with despiralizing proteins in the presence of formaldehyde.  相似文献   
6.
It has been shown that formaldehyde has no marked physical effect upon DNA resulting in lowering of its melting temperature. The effect of lowering of DNA melting temperature observed earlier by other authors resulted from the process of unwinding of DNA due to chemical reactions of formaldehyde with reactive base groups.  相似文献   
7.
8.
Even a small amount of formaldehyde is shown to induce a drop in the RNase A enzymatic activity. This drop is rapid from the start and then begins to be slower. A supposition was made on nature of the enzyme activity. Comparison of the effects of formaldehyde on the enzymatic and the destabilizing activity of RNase A was made. The effect of formaldehyde on the enzymatic activity does not correlate with its effect on the ability of RNase to destabilize the DNA double helix.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号