首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73篇
  免费   8篇
  2020年   1篇
  2017年   2篇
  2016年   3篇
  2015年   7篇
  2014年   6篇
  2013年   3篇
  2012年   3篇
  2011年   3篇
  2010年   2篇
  2009年   6篇
  2008年   6篇
  2007年   2篇
  2006年   1篇
  2005年   4篇
  2004年   3篇
  2003年   3篇
  2002年   6篇
  2001年   1篇
  2000年   3篇
  1998年   4篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1991年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
排序方式: 共有81条查询结果,搜索用时 15 毫秒
1.
E. Korpimäki 《Oecologia》1987,74(2):277-285
Summary Food samples of breeding Kestrels (Falco tinnunculus) and Long-eared Owls (Asio otus) were collected in the peak and low phase of their preferred prey (Microtus voles) in western Finland. Diets of pairs that bred as neighbours (1 km) with interspecifics were compared with those of non-neighbours. In both species, neighbouring pairs fed less on Microtus voles and more on alternative prey than did non-neighbours. Competition theory predicts that diet overlap should be lower during prey shortage and that diet similarity should be especially reduced in neighbouring pairs. Observations were consistent with expectations: diet similarity was lower in the low vole years and neighbouring pairs showed less diet overlap that non-neighbours. Differences in habitat composition and prey availability at the sample sites should not confuse the results. In addition to the high diet similarity, hunting habitats and nest sites of the species overlapped almost completely; they only showed clear temporal segregation in hunting. Probably because of food competition, the neighbouring pairs of both species produced significantly fewer young than the non-neighbours. These results contrast with the view that the diet composition and dietary shift of rodent-feeding predatory birds can be interpreted in terms of simple opportunistic foraging. In the breeding season, interspecific competition for food seems to be an important factor that affects the niches of these species, especially in northern areas, where the seasonal low phase of voles in spring and the number of alternative prey are lower than in more southern areas.  相似文献   
2.
The expression and impact of maternal effects may vary greatly between populations and environments. However, little is known about large‐scale geographical patterns of variation in maternal deposition to eggs. In birds, as in other oviparous animals, the outermost maternal component of an egg is the shell, which protects the embryo, provides essential mineral resources and allows its interaction with the environment in the form of gas exchange. In this study, we explored variation of eggshell traits (mass, thickness, pore density and pigmentation) across 15 pied flycatcher populations at a large geographic scale. We found significant between‐population variation in all eggshell traits, except in pore density, suggesting spatial variation in their adaptive benefits or in the females’ physiological limitations during egg laying. Between‐ population variation in shell structure was not due to geographic location (latitude and longitude) or habitat type. However, eggshells were thicker in populations that experienced higher ambient temperature during egg laying. This could be a result of maternal resource allocation to the shell being constrained under low temperatures or of an adaptation to reduce egg water loss under high temperatures. We also found that eggshell colour intensity was positively associated with biliverdin pigment concentration, shell thickness and pore density. To conclude, our findings reveal large‐ scale between‐population variation of eggshell traits, although we found little environmental dependency in their expression. Our findings call for further studies that explore other environmental factors (e.g. calcium availability and pollution levels) and social factors like sexual selection intensity that may account for differences in shell structure between populations.  相似文献   
3.
Huitu O  Norrdahl K  Korpimäki E 《Oecologia》2003,135(2):209-220
Populations of northern small rodents have previously been observed to fluctuate in spatial synchrony over distances ranging from tens to hundreds of kilometers between sites. It has been suggested that this phenomenon is caused by common environmental perturbations, mobile predators or dispersal movements. However, very little focus has been given to how the physical properties of the geographic area over which synchrony occurs, such as landscape composition and climate, affect spatial population dynamics. This study reports on the spatial and temporal properties of vole population fluctuations in two areas of western Finland: one composed of large interconnected areas of agricultural farmland interspersed by forests and the other highly dominated by forest areas, containing more isolated patches of agricultural land. Furthermore, the more agricultural area exhibits somewhat milder winters with less snow than the forested area. We found the amplitude of vole cycles to be essentially the same in the two areas, suggesting that the relative amount of predation on small rodents by generalist versus specialist predators is similar in both areas. No seasonal differences in the timing of synchronization were observable for Microtus voles, whereas bank vole populations in field habitats appeared to become synchronized primarily during winter. Microtus populations in field habitats exhibited smaller spatial variation and a higher degree of synchrony in the more continuous agricultural landscape than in the forest-dominated landscape. We suggest that this inter-areal difference is due to differences in the degree of inter-patch connectivity, with predators and dispersal acting as the primary synchronizing agents. Bank vole populations in field habitats were more synchronized within the forest-dominated landscape, most likely reflecting the suitability of the inter-patch matrix and the possibility of dispersal. Our study clearly indicates that landscape composition needs to be taken into account when describing the spatial properties of small rodent population dynamics.  相似文献   
4.
5.
Hatching asynchrony is the consequence of birds initiating incubation before clutch completion. It has been suggested that variation in hatching asynchrony in owls is extensive, and therefore they should be excellent objects to study the effects of spatio-temporal variation in food abundance on this phenomenon. We examined how abundance and predictability of food affected hatching asynchrony in Tengmalm's owl Aegolius funereus (Linnaeus), which mainly feeds on voles which fluctuate in 3- to 4-year cycles in northern Europe. Hatching span averaged 6-7 days (range 0-13 days) and increased with clutch size. Food supply did not directly influence levels of hatching asynchrony but it influenced indirectly via marked among-year changes in clutch size. During the decrease phase of the vole cycle the proportion of hatchlings producing fledglings decreased with asynchrony, suggesting that chick mortality was most common among asynchronous broods when food became scarce. This finding is consistent with Lack's brood reduction hypothesis, i.e. that if food becomes scarce during the nestling period the youngest nestlings would die first without endangering the survival of the whole brood.  相似文献   
6.
Mechanisms generating the well-known 3-5 year cyclic fluctuations in densities of northern small rodents (voles and lemmings) have remained an ecological puzzle for decades. The hypothesis that these fluctuations are caused by delayed density-dependent impacts of predators was tested by replicated field experimentation in western Finland. We reduced densities of all main mammalian and avian predators through a 3 year vole cycle and compared vole abundances between four reduction and four control areas (each 2.5-3 km(2)). The reduction of predator densities increased the autumn density of voles fourfold in the low phase, accelerated the increase twofold, increased the autumn density of voles twofold in the peak phase, and retarded the initiation of decline of the vole cycle. Extrapolating these experimental results to their expected long-term dynamic effects through a demographic model produces changes from regular multiannual cycles to annual fluctuations with declining densities of specialist predators. This supports the findings of the field experiment and is in agreement with the predation hypothesis. We conclude that predators may indeed generate the cyclic population fluctuations of voles observed in northern Europe.  相似文献   
7.
Top predators may induce extensive cascading effects on lower trophic levels, for example, through intraguild predation (IGP). The impacts of both mammalian and avian top predators on species of the same class have been extensively studied, but the effects of the latter upon mammalian mesopredators are not yet as well known. We examined the impact of the predation risk imposed by a large avian predator, the golden eagle (Aquila chrysaetos, L.), on its potential mammalian mesopredator prey, the red fox (Vulpes vulpes, L.), and the pine marten (Martes martes, L.). The study combined 23 years of countrywide data from nesting records of eagles and wildlife track counts of mesopredators in Finland, northern Europe. The predation risk of the golden eagle was modeled as a function of territory density, density of fledglings produced, and distance to nearest active eagle territory, with the expectation that a high predation risk would reduce the abundances of smaller sized pine martens in particular. Red foxes appeared not to suffer from eagle predation, being in fact most numerous close to eagle nests and in areas with more eagle territories. This is likely due to similar prey preferences of the two predators and the larger size of foxes enabling them to escape eagle predation risk. Somewhat contrary to our prediction, the abundance of pine martens increased from low to intermediate territory density and at close proximity to eagle nests, possibly because of similar habitat preferences of martens and eagles. We found a slightly decreasing trend of marten abundance at high territory density, which could indicate that the response in marten populations is dependent on eagle density. However, more research is needed to better establish whether mesopredators are intimidated or predated by golden eagles, and whether such effects could in turn cascade to lower trophic levels, benefitting herbivorous species.  相似文献   
8.
The loss and fragmentation of forest habitats have been considered to pose a worldwide threat to the viability of forest-dwelling animals, especially to species that occupy old forests. We investigated whether the annual survival of sedentary male Tengmalm’s owls Aegolius funereus was associated with the cover of old coniferous forests in Finland. Survival and recapture probabilities varied annually with density changes in populations of the main prey (Microtus voles). When this variation was controlled for, and relationships between survival and proportions of the three different forest age classes (old-growth, middle-aged, and young) were modeled separately, the old-growth model was the most parsimonious. Survival increased with the cover of old forest, although the extent of old forest within owl territories was relatively small (mean ∼12%, range 2–37%). This association, however, varied among years and appeared especially in years of increasing vole abundance. At such times, old forests may sustain high populations of bank voles Clethrionomys glareolus, shrews and small passerines. In addition, old forests may serve as refuges against large avian predator species, such as Ural owls Strix uralensis and goshawks Accipiter gentilis. Our results suggest that changes in habitat quality created by agriculture and forestry may have the potential to reduce adult survival, an essential component of fitness and population viability.  相似文献   
9.
10.
Alien predators have been recognised as one possible cause for amphibian declines around the world, but little is known of habitat-mediated predation impacts especially on adult amphibians. We studied common frog Rana temporaria under American mink Mustela vison predation in the outer archipelago of the Baltic Sea, south-western Finland. Using egg batches as an index of breeding frog female numbers we compared frog numbers and densities between a large, long-term mink-removal area and a comparable control area. Frog numbers in the removal area were at least 2.7-fold higher than those in the control area. In the presence of mink, frog densities increased with the amount of vegetation cover on the islands, indicating that mink predation affected frog densities especially on less-vegetated islands. An opposite trend appeared to be true for frogs in the mink-removal area, where other predators like snakes could induce a decline of frog densities on more vegetated islands. Shrub or grass vegetation seems to provide frogs shelter against alien mink predation. Our result highlights the importance of landscape-level habitat management as a conservation tool for amphibian populations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号