首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  2008年   1篇
  2007年   1篇
  2001年   1篇
  1999年   1篇
  1992年   1篇
  1989年   1篇
  1975年   1篇
  1973年   1篇
  1972年   2篇
  1969年   2篇
排序方式: 共有12条查询结果,搜索用时 140 毫秒
1.
Among diverse models that are used to describe and interpret the changes in global biodiversity through the Phanerozoic, the exponential and logistic models (traditionally used in population biology) are the most popular. As we have recently demonstrated (Markov, Korotayev, 2007), the growth of the Phanerozoic marine biodiversity at genus level correlates better with the hyperbolic model (widely used in demography and macrosociology). Here we show that the hyperbolic model is also applicable to the Phanerozoic continental biota at genus and family levels, and to the marine biota at species, genus, and family levels. There are many common features in the evolutionary dynamics of the marine and continental biotas that imply similarity and common nature of the factors and mechanisms underlying the hyperbolic growth. Both marine and continental biotas are characterized by continuous growth of the mean longevity of taxa, by decreasing extinction and origination rates, by similar pattern of replacement of dominant groups, by stepwise accumulation of evolutionary stable, adaptable and "physiologically buffered" taxa with effective mechanisms of parental care, protection of early developmental stages, etc. At the beginning of the development of continental biota, the observed taxonomic diversity was substantially lower than that predicted by the hyperbolic model. We suggest that this is due, firstly, to the fact that, during the earliest stages of the continental biota evolution, the groups that are not preserved in the fossil record (such as soil bacteria, unicellular algae, lichens, etc.) played a fundamental role, and secondly, to the fact that the continental biota initially formed as a marginal portion of the marine biota, rather than a separate system. The hyperbolic dynamics is most prominent when both marine and continental biotas are considered together. This fact can be interpreted as a proof of the integrated nature of the biosphere. In the macrosociological models, the hyperbolic pattern of the world population growth arises from a non-linear second-order positive feedback between the demographic growth and technological development (more people - more potential inventors - faster technological growth - the carrying capacity of the Earth grows faster - faster population growth - more people - more potential inventors, and so on). Based on the analogy with macrosociological models and diverse paleontological data, we suggest that the hyperbolic character of biodiversity growth can be similarly accounted for by a non-linear second-order positive feedback between the diversity growth and community structure complexity. The feedback can work via two parallel mechanisms: 1) decreasing extinction rate (more taxa- higher alpha diversity, or mean number of taxa in a community - communities become more complex and stable - extinction rate decreases - more taxa, and so on) and 2) increasing origination rate (new taxa facilitate niche construction; newly formed niches can be occupied by the next "generation" of taxa). The latter possibility makes the mechanisms underlying the hyperbolic growth of biodiversity and human population even more similar, because the total ecospace of the biota is analogous to the "carrying capacity of the Earth" in demography. As far as new species can increase ecospace and facilitate opportunities for additional species entering the community, they are analogous to the "inventors" of the demographic models whose inventions increase the carrying capacity of the Earth. The hyperbolic growth of the Phanerozoic biodiverstiy suggests that "cooperative" interactions between taxa can play an important role in evolution, along with generally accepted competitive interactions. Due to this "cooperation", the evolution of biodiversity acquires some features of a self-accelerating process. Macroevolutionary "cooperation" reveals itself in: 1) increasing stability of communities that arises from alpha diversity growth; 2) ability of species to facilitate opportunities for additional species entering the community.  相似文献   
2.
The temporal heterogeneity of chum salmon stock of the Anadyr Bay region was investigated on the basis of a set of discrete external morphological features and fluctuating asymmetry level of some meristic structures. Differentiation of Anadyr Bay chum salmon during the spawning run was found to be associated with the abundance level of spawning stock in a particular year. Sharply pronounced temporal heterogeneity, based on the investigated characteristics, in the area near the river mouth can be considered as an indicator of the subsequent deficiency of spawners on the spawning grounds of rivers in the Anadyr Bay region.  相似文献   
3.
4.
Generic diversity dynamics of the Phanerozoic marine animals is far better described by the hyperbolic model, widely used in demography and macrosociology, than by the exponential and logistic models from population dynamics traditionally employed for this purpose. Exponential and logistic models imply zero influence of interactions between taxa on the dynamics of diversity, with the exception of competing for unoccupied ecological space, whereas the hyperbolic model implies non-linear second-order positive feedback in the development of the biota. The hyperbolic human population growth is caused by positive feedback between population size and the rate of technological and cultural development (the more individuals, the more inventors, the more rapid progress, the more rapid growth of the Earth's bearing capacity; the smaller death-rate, the more accelerated growth-rate of the population). Probably there is also non-linear second-order positive feedback between diversity and community structure (the more genera, the higher alpha-diversity, which is defined as average number of genera per community, the more complicated and stable, "buffered" communities, the greater "taxonomic capacity of the environment" and average duration of the existence of genera; extinction rate dencreases, biodiversity growth-rate increases). The simplest mathematical model of biodiversity dynamics based on this assumption is confirmed by empirical data on alpha-diversity dynamics. Progressive complexification of marine communities during the Phanerozoic is also confirmed by the growing evennes of generic abundance distribution in paleocommunities.  相似文献   
5.
6.
7.
8.
Calcitonin structure, biological activity, formation in organism and methods of production including isolation from natural sources, chemical synthesis and genetic engineering methods are reviewed.  相似文献   
9.
10.
Studies have been made on 11-oxycorticosteroid content of the blood serum in spawning salmons. During sexual maturation and spawning migration, the level of 11-oxycorticosteroids in the blood serum undergoes significant changes. The pattern of these changes is similar in both of the species investigated. During fresh-water period of migration, 11-3xycorticosteroid content in the blood serum of females of O. gorbuscha is 3 times higher as compared to that during sea-water period. In O. keta, this level increases two-fold. The increased content of 11-oxycorticosteroids remains constant up to spawning. After the latter, the level of 11-oxycorticosteroids decreases reaching the values typical for sea-water period.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号