首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   9篇
  2023年   2篇
  2021年   1篇
  2020年   2篇
  2019年   4篇
  2018年   1篇
  2016年   1篇
  2015年   3篇
  2014年   4篇
  2013年   3篇
  2012年   7篇
  2011年   9篇
  2010年   7篇
  2009年   4篇
  2008年   5篇
  2007年   4篇
  2006年   6篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   4篇
  1992年   1篇
  1991年   2篇
  1988年   1篇
  1982年   1篇
排序方式: 共有76条查询结果,搜索用时 15 毫秒
1.
2.

Background

Dental biomechanics based on finite element (FE) analysis is attracting enormous interest in dentistry, biology, anthropology and palaeontology. Nonetheless, several shortcomings in FE modeling exist, mainly due to unrealistic loading conditions. In this contribution we used kinematics information recorded in a virtual environment derived from occlusal contact detection between high resolution models of an upper and lower human first molar pair (M1 and M1, respectively) to run a non-linear dynamic FE crash colliding test.

Methodology

MicroCT image data of a modern human skull were segmented to reconstruct digital models of the antagonistic right M1 and M1 and the dental supporting structures. We used the Occlusal Fingerprint Analyser software to reconstruct the individual occlusal pathway trajectory during the power stroke of the chewing cycle, which was applied in a FE simulation to guide the M1 3D-path for the crash colliding test.

Results

FE analysis results showed that the stress pattern changes considerably during the power stroke, demonstrating that knowledge about chewing kinematics in conjunction with a morphologically detailed FE model is crucial for understanding tooth form and function under physiological conditions.

Conclusions/Significance

Results from such advanced dynamic approaches will be applicable to evaluate and avoid mechanical failure in prosthodontics/endodontic treatments, and to test material behavior for modern tooth restoration in dentistry. This approach will also allow us to improve our knowledge in chewing-related biomechanics for functional diagnosis and therapy, and it will help paleoanthropologists to illuminate dental adaptive processes and morphological modifications in human evolution.  相似文献   
3.
4.
5.

Background & Aims

Current guidelines recommend immunosuppressive treatment (IT) in patients with primary sclerosing cholangitis (PSC) and elevated aminotransferase levels more than five times the upper limit of normal and elevated serum IgG-levels above twice the upper limit of normal. Since there is no evidence to support this recommendation, we aimed to assess the criteria that guided clinicians in clinical practice to initiate IT in patients with previously diagnosed PSC.

Methods

This is a retrospective analysis of 196 PSC patients from seven German hepatology centers, of whom 36 patients had received IT solely for their liver disease during the course of PSC. Analyses were carried out using methods for competing risks.

Results

A simplified autoimmune hepatitis (AIH) score >5 (HR of 36, p<0.0001) and a modified histological activity index (mHAI) greater than 3/18 points (HR 3.6, p = 0.0274) were associated with the initiation of IT during the course of PSC. Of note, PSC patients who subsequently received IT differed already at the time of PSC diagnosis from those patients, who did not receive IT during follow-up: they presented with increased levels of IgG (p = 0.004) and more frequently had clinical signs of cirrhosis (p = 0.0002).

Conclusions

This is the first study which investigates the parameters associated with IT in patients with PSC in clinical practice. A simplified AIH score >5 and a mHAI score >3, suggesting concomitant features of AIH, influenced the decision to introduce IT during the course of PSC. In German clinical practice, the cutoffs used to guide IT may be lower than recommended by current guidelines.  相似文献   
6.
7.
Neanderthals have a distinctive suite of dental features, including large anterior crown and root dimensions and molars with enlarged pulp cavities. Yet, there is little known about variation in molar root morphology in Neanderthals and other recent and fossil members of Homo. Here, we provide the first comprehensive metric analysis of permanent mandibular molar root morphology in Middle and Late Pleistocene Homo neanderthalensis, and Late Pleistocene (Aterian) and recent Homo sapiens. We specifically address the question of whether root form can be used to distinguish between these groups and assess whether any variation in root form can be related to differences in tooth function. We apply a microtomographic imaging approach to visualise and quantify the external and internal dental morphologies of both isolated molars and molars embedded in the mandible (n = 127). Univariate and multivariate analyses reveal both similarities (root length and pulp volume) and differences (occurrence of pyramidal roots and dental tissue volume proportion) in molar root morphology among penecontemporaneous Neanderthals and Aterian H. sapiens. In contrast, the molars of recent H. sapiens are markedly smaller than both Pleistocene H. sapiens and Neanderthals, but share with the former the dentine volume reduction and a smaller root-to-crown volume compared with Neanderthals. Furthermore, we found the first molar to have the largest average root surface area in recent H. sapiens and Neanderthals, although in the latter the difference between M1 and M2 is small. In contrast, Aterian H. sapiens root surface areas peak at M2. Since root surface area is linked to masticatory function, this suggests a distinct occlusal loading regime in Neanderthals compared with both recent and Pleistocene H. sapiens.  相似文献   
8.
Thermoelectric materials could play an increasing role for the efficient use of energy resources and waste heat recovery in the future. The thermoelectric efficiency of materials is described by the figure of merit ZT = (S2σT)/κ (S Seebeck coefficient, σ electrical conductivity, κ thermal conductivity, and T absolute temperature). In recent years, several groups worldwide have been able to experimentally prove the enhancement of the thermoelectric efficiency by reduction of the thermal conductivity due to phonon blocking at nanostructured interfaces. This review addresses recent developments from thermoelectric model systems, e.g. nanowires, nanoscale meshes, and thermionic superlattices, up to nanograined bulk‐materials. In particular, the progress of nanostructured silicon and related alloys as an emerging material in thermoelectrics is emphasized. Scalable synthesis approaches of high‐performance thermoelectrics for high‐temperature applications is discussed at the end.  相似文献   
9.
Bax and Bid are pro-apoptotic members of the Bcl-2 protein family. Upon cleavage by caspase-8, Bid activates Bax. Activated Bax inserts into the mitochondrial outer membrane forming oligomers which lead to membrane poration, release of cytochrome c, and apoptosis. The detailed mechanism of Bax activation and the topology and composition of the oligomers are still under debate. Here molecular details of Bax activation and oligomerization were obtained by application of several biophysical techniques, including atomic force microscopy, cryoelectron microscopy, and particularly electron paramagnetic resonance (EPR) spectroscopy performed on spin-labeled Bax. Incubation with detergents, reconstitution, and Bid-triggered insertion into liposomes were found to be effective in inducing Bax oligomerization. Bid was shown to activate Bax independently of the stoichiometric ratio, suggesting that Bid has a catalytic function and that the interaction with Bax is transient. The formation of a stable dimerization interface involving two Bcl-2 homology 3 (BH3) domains was found to be the nucleation event for Bax homo-oligomerization. Based on intermolecular distance determined by EPR, a model of six adjacent Bax molecules in the oligomer is presented where the hydrophobic hairpins (helices α5 and α6) are equally spaced in the membrane and the two BH3 domains are in close vicinity in the dimer interface, separated by >5 nm from the next BH3 pairs.  相似文献   
10.
Dodecin is a small dodecameric flavoprotein from Halobacterium salinarum that contains two flavins stacked between two tryptophan residues to form an aromatic tetrade. The functional properties of heterologously expressed dodecin were investigated by fluorescence spectroscopy, which allowed the determination of dissociation constants for a number of protein-ligand complexes. The values obtained were in the nanomolar to micromolar range and correlate positively with the ligand size. These data were supplemented by X-ray crystal structures of the apododecin and holocomplexes with lumichrome, lumiflavin, riboflavin and FMN at resolutions between 1.55 to 1.95 A to unravel a gating mechanism as the structural basis for the preferential binding of the small ligands lumichrome and lumiflavin. The detailed analysis of the dodecin manifold for preferential binding of lumichrome and lumiflavin provides insight on a subatom level into a protein's strategy to gain selectivity for low molecular mass compounds by steric restrictions rather than specific interactions. Investigations on the ligand composition of a wild-type dodecin crystal (1.32 A resolution) support conclusions of functional and structural investigations on heterologously expressed dodecin, and strongly suggest that lumichrome, a molecule associated with the flavin metabolism, is a ligand of dodecin in vivo. Studies on mutant protein and a Halorhodospira halophila homologue spread the idea of a lumichrome binding system as a possible "waste"-trapping device, widely distributed in prokaryotes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号