首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   5篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2017年   1篇
  2016年   2篇
  2015年   4篇
  2014年   1篇
  2012年   2篇
  2011年   2篇
  2009年   2篇
  2008年   6篇
  2007年   2篇
  2006年   4篇
  2005年   4篇
  2004年   4篇
  2003年   1篇
  2002年   1篇
  2000年   3篇
  1999年   2篇
  1995年   1篇
排序方式: 共有47条查询结果,搜索用时 108 毫秒
1.
2.
Plant species richness and the presence of certain influential species (sampling effect) drive the stability and functionality of ecosystems as well as primary production and biomass of consumers. However, little is known about these floristic effects on richness and community composition of soil biota in forest habitats owing to methodological constraints. We developed a DNA metabarcoding approach to identify the major eukaryote groups directly from soil with roughly species-level resolution. Using this method, we examined the effects of tree diversity and individual tree species on soil microbial biomass and taxonomic richness of soil biota in two experimental study systems in Finland and Estonia and accounted for edaphic variables and spatial autocorrelation. Our analyses revealed that the effects of tree diversity and individual species on soil biota are largely context dependent. Multiple regression and structural equation modelling suggested that biomass, soil pH, nutrients and tree species directly affect richness of different taxonomic groups. The community composition of most soil organisms was strongly correlated due to similar response to environmental predictors rather than causal relationships. On a local scale, soil resources and tree species have stronger effect on diversity of soil biota than tree species richness per se.  相似文献   
3.
Passive acoustic monitoring can be used for many purposes including biodiversity and habitat assessments and studying the ecology of populations, communities and soundscapes. As such, acoustic recording devices are essential data collection tools for bioacousticians and soundscape ecologists. Currently available commercial options are typically expensive and limited to recording either ultrasonic or audible frequencies. Here, we present the AURITA (Audible and Ultrasonic Recording In TAndem) for the autonomous collection of both audible and ultrasonic acoustic data. This self-contained, modular unit combines the Solo, an open-source, Raspberry-Pi-based recorder and a commercially available bat recorder, the Peersonic RPA2, enabling it to capture sounds from 60 Hz to 192 kHz in WAV format. The configuration presented costs ~£350 (excluding memory cards and batteries) to produce and can be maintained and repaired in the field. Two nine-week field tests involving 12 AURITA units were conducted in 2016 and 2017 and confirmed their reliability, resulting in 34,093 h of audible data and 551 h of ultrasonic data; all units were retrieved successfully and intact. The AURITA proved to be reliable in the field and produced high-quality acoustic data, making it ideal for simultaneous monitoring in both audible and ultrasonic frequencies over continuous periods of time.  相似文献   
4.
BACKGROUND AND AIMS: Changes in number of trichomes and in composition and concentrations of their exudates throughout leaf development may have important consequences for plant adaptation to abiotic and biotic factors. In the present study, seasonal changes in leaf trichomes and epicuticular flavonoid aglycones in three Finnish birch taxa (Betula pendula, B. pubescens ssp. pubescens, and B. pubescens ssp. czerepanovii) were followed. METHODS: Trichome number and ultrastructure were studied by means of light, scanning and transmission electron microscopy, while flavonoid aglycones in ethanolic leaf surface extracts were analysed by high-pressure liquid chromatography. KEY RESULTS: Density of both glandular and non-glandular trichomes decreased drastically with leaf expansion while the total number of trichomes per leaf remained constant, indicating that the final number of trichomes is established early in leaf development. Cells of glandular trichomes differentiate before those of the epidermis and produce secreted material only during the relatively short period (around 1-2 weeks) of leaf unfolding and expansion. In fully expanded leaves, glandular trichomes appeared to be at the post-secretory phase and function mainly as storage organs; they contained lipid droplets and osmiophilic material (probably phenolics). Concentrations (mg g(-1) d. wt) of surface flavonoids decreased with leaf age in all taxa. However, the changes in total amount ( microg per leaf) of flavonoids during leaf development were taxon-specific: no changes in B. pubescens ssp. czerepanovii, increase in B. pendula and in B. pubescens ssp. pubescens followed by the decline in the latter taxon. Concentrations of most of the individual leaf surface flavonoids correlated positively with the density of glandular trichomes within species, suggesting the participation of glandular trichomes in production of surface flavonoids. CONCLUSIONS: Rapid decline in the density of leaf trichomes and in the concentrations of flavonoid aglycones with leaf age suggests that the functional role of trichomes is likely to be most important at the early stages of birch leaf development.  相似文献   
5.
The morphology, ultrastructure, density and distribution of trichomes on leaves of Betula pendula, B. pubescens ssp. pubescens, B. pubescens ssp. czerepanovii and B. nana were examined by means of light, scanning and transmission electron microscopy. The composition of flavonoids in ethanolic leaf surface extracts was analysed by high pressure liquid chromatography. All taxa examined contained both glandular and non-glandular trichomes (short and/or long hairs) but differed from each other in trichome ultrastructure, density and location on the leaf. Leaves of B. pubescens were more hairy than those of B. pendula, but the latter species had a higher density of glandular trichomes. Of the two subspecies of B. pubescens, leaves of ssp. pubescens had more short hairs on the leaf surface and four times the density of glandular trichomes of leaves of ssp. czerepanovii, whereas, in the latter subspecies, short hairs occurred largely on leaf veins, as in B. nana. The glandular trichomes were peltate glands, consisting of medullar and cortical cells, which differed structurally. Cortical cells possessed numerous small, poorly developed plastids and small vacuoles, whereas medullar cells had several large plastids with well-developed thylakoid systems and fewer vacuoles. In B. pubescens subspecies, vacuoles of the glandular cells contained osmiophilic deposits, which were probably phenolic, whereas in B. pendula, vacuoles of glandular trichomes were characterized by the presence of numerous myelin-like membranes. The composition of epicuticular flavonoids also differed among species. The two subspecies of B. pubescens and B. nana shared the same 12 compounds, but five of these occurred only in trace amounts in B. nana. Leaf surface extracts of B. pendula contained just six flavonoids, three of which occurred only in this species. In summary, the structure, density and distribution of leaf trichomes and the composition of epicuticular flavonoids represent good taxonomic markers for Finnish birch species.  相似文献   
6.
On the basis of physiological and ecological costs of defense allocation, most plant defense theories predict the occurrence of trade-offs between resource investment in different types of antiherbivore defenses. To test this prediction, we conducted a meta-analysis of 31 studies published in 1976-2002 that provided data on covariation of different defensive traits in plant genotypes. We found no overall negative association between different defensive traits in plants; instead, the relationship between defensive traits varied from positive to negative depending on the types of co-occurring defenses. Evidence of trade-off was found only between constitutive and induced defenses. Therefore, to a large extent, plants appear to be jacks-of-all-trades, masters of all and may successfully produce several types of defense without paying considerable trade-offs. Our survey thus provides little evidence that genetic trade-offs between defensive traits significantly constrain the evolution of multiple defenses in plants.  相似文献   
7.
8.
9.
Using two genetic approaches and seven different plant systems, we present findings from a meta-analysis examining the strength of the effects of plant genetic introgression and genotypic diversity across individual, community and ecosystem levels with the goal of synthesizing the patterns to date. We found that (i) the strength of plant genetic effects can be quite high; however, the overall strength of genetic effects on most response variables declined as the levels of organization increased. (ii) Plant genetic effects varied such that introgression had a greater impact on individual phenotypes than extended effects on arthropods or microbes/fungi. By contrast, the greatest effects of genotypic diversity were on arthropods. (iii) Plant genetic effects were greater on above-ground versus below-ground processes, but there was no difference between terrestrial and aquatic environments. (iv) The strength of the effects of intraspecific genotypic diversity tended to be weaker than interspecific genetic introgression. (v) Although genetic effects generally decline across levels of organization, in some cases they do not, suggesting that specific organisms and/or processes may respond more than others to underlying genetic variation. Because patterns in the overall impacts of introgression and genotypic diversity were generally consistent across diverse study systems and consistent with theoretical expectations, these results provide generality for understanding the extended consequences of plant genetic variation across levels of organization, with evolutionary implications.  相似文献   
10.
Plants growing in diverse communities are believed to exhibit associational resistance to herbivores, but this hypothesis has seldom been tested experimentally for vertebrate herbivores in forest ecosystems. We examined browsing patterns of the two principal mammalian herbivores of Finnish boreal forests, moose and voles, in young stands where tree species diversity and composition were experimentally manipulated. The stands were composed either of monocultures or different 2–5 species mixtures of Norway spruce, Scots pine, Siberian larch, silver birch, and black alder. Voles and moose showed contrasting responses to stand diversity and species composition. In accordance with the predictions of the associational resistance hypothesis, vole damage was higher in tree monocultures than in mixed stands, although stand diversity effects were statistically significant only at one of the three study areas. Voles also damaged more trees in coniferous than in deciduous stands. In contrast, moose browsing tended to increase with the number of tree species in a stand and with the presence of the preferred tree species, birch, in a mixture. The observed differences in vole and moose responses to stand diversity and species composition are likely to be due to different feeding specialisation, foraging patterns, and movement ability of these herbivores. Voles switched to trees only when the supply of a more preferred food (grasses and forbs) was depleted and restricted their feeding choice only to the most palatable tree species regardless of the number of tree species present per stand. In contrast, tree branches and foliage represented an important part of moose diet throughout the year; moose may be able to tolerate secondary plant metabolites of different tree species better than voles and may thus benefit from diet broadening when more tree species are available. Furthermore, the home range size and foraging ability of these two very differently sized herbivores may partly explain the observed differences in utilisation of different tree species. Finally, both moose and voles showed high spatial and temporal variation in their feeding; in particular, vole damage was more influenced by tree species diversity in areas and years with high vole densities. Thus, diversification of forest stands may have very different effects on mammalian browsing depending on the herbivores present, their densities, and the tree species used in reforestation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号