首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
  2022年   1篇
  2019年   1篇
  2016年   2篇
  2014年   3篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2008年   4篇
  2006年   1篇
  2004年   1篇
  2001年   2篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
1.
The Protein Journal - An interplay between monomeric and dimeric forms of human epidermal growth factor (EGF) affecting its interaction with EGF receptor (EGFR) is poorly understood. While EGF...  相似文献   
2.
Bilayer liposomes from a mixture of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylethanolamine (DPPC:DPPE=8:2, molar ratio) or DPPC labeled with 14C-DPPC (DPPC:14C-DPPC) were bombarded with thermally activated tritium atoms. The tritiated liposomes were hydrolyzed by phospholipase C, and the tritium incorporation into different parts of the bilayer along its thickness was determined. The tritium flux attenuation coefficients were calculated for the headgroup (k1=0.176±0.032 Å–1) and acylglycerol residue (k2=0.046±0.004 Å–1) layers indicating a preferential attenuation of the tritium flux in the headgroup region and relative transparence of the membrane hydrophobic part. The finding is potentially important to apply tritium bombardment for investigation of spatial organization of transmembrane proteins in their native lipid environment.  相似文献   
3.
Influenza A virus matrix M1 protein is membrane associated and plays a crucial role in virus assembly and budding. The N-terminal two thirds of M1 protein was resolved by X-ray crystallography. The overall 3D structure as well as arrangement of the molecule in relation to the viral membrane remains obscure. Now a proteolytic digestion of virions with bromelain was used as an instrument for the in situ assessment of the M1 protein structure. The lipid bilayer around the subviral particles lacking glycoprotein spikes was partially disrupted as was shown by transmission electron microscopy. A phenomenon of M1 protein fragmentation inside the subviral particles was revealed by SDS-PAGE analysis followed by in-gel trypsin hydrolysis and MALDI-TOF mass spectrometry analysis of the additional bands. Putative bromelain-digestion sites appeared to be located at the surface of the M1 protein globule and could be used as landmarks for 3D molecular modeling.  相似文献   
4.
cDNA of human gene Surf-6 (hSutf-6) was amplified and cloned into vector pGEX-2T for the expression in the bacterial system of protein hSURF-6 translationally fused to glutathione-S-transferase. The resulting vector is named as pGEX-2T-GST-hSurf-6. Superproducer of chimeric protein GST-hSURF-6 was obtained on the basis of Escherichia coli strain BL21-CodonPlus(DE3)-RIL. Its purification was performed by the affinity chromatography on L-glatathione-sepharose. The proportion of recombinant protein GST-hSURF-6 in the optimized conditions was not less than 15% of the total bacterial protein, and up to 7 mg of the protein was isolated from 1 liter of culture of the producer strain. The final fraction of eluate contained approximately 80% of GST-hSURF-6. The amount and the purity of the isolated protein were sufficient to immunize animals and obtain antibodies. Protein GST-hSURF-6 can also be used as an affinity ligand for revealing protein partners of hSURF-6 in human cells.  相似文献   
5.
A new format of a very rapid, low-cost and high-productive analysis based on the acid precipitation of radiolabeled DNA was developed. By contrast to the conventional processing of a large number of GF/C discs, the method employs one GF/C strip containing samples on individual teeth. The strip assay was validated by comparison with the glass fiber disk technique; the efficiency was demonstrated by screening E. coli superproducers and fractions obtained at the steps of Bst DNA polymerase, Large Fragment purification by the protocol we developed. The principle proposed allows simultaneous assaying many samples for the activity of different polymerases.  相似文献   
6.
Influenza A virus, a member of the Orthomyxoviridae family of enveloped viruses, is one of the human and animal top killers, and its structure and components are therefore extensively studied during the last decades. The most abundant component, M1 matrix protein, forms a matrix layer (scaffold) under the viral lipid envelope, and the functional roles as well as structural peculiarities of the M1 protein are still under heavy debate. Despite multiple attempts of crystallization, no high resolution structure is available for the full length M1 of Influenza A virus. The likely reason for the difficulties lies in the intrinsic disorder of the M1 C-terminal part preventing diffraction quality crystals to be grown. Alternative structural methods including synchrotron small-angle X-ray scattering (SAXS), atomic force microscopy, cryo-electron microscopy/tomography are therefore widely applied to understand the structure of M1, its self-association and interactions with the lipid membrane and the viral nucleocapsid. These methods reveal striking similarities in the behavior of M1 and matrix proteins of other enveloped RNA viruses, with the differences accompanied by the specific features of the viral lifecycles, thus suggesting common interaction principles and, possibly, common evolutional ancestors. The structural information on the Influenza A virus M1 protein obtained to the date strongly suggests that the intrinsic disorder in the C-terminal domain has important functional implications.  相似文献   
7.
MALDI-TOF MS and N-terminal amino acid sequencing allowed us to identify several fragments of the C-terminal peptide of Influenza A hemagglutinin (HA) containing transmembrane domains (TMD). These fragments were detected in the organic phase of chloroform-methanol extracts from bromelain-treated virus particles. Heterogeneous fatty acylation of the C-terminus was revealed. Tritium bombardment technique might open an opportunity for 3D structural investigation of the HA TMD in situ.  相似文献   
8.
The proteolysis of flu virions of the strain A/Puerto Rico/8/34 (subtype H1N1) by enzymes of various classes was studied to develop an approach to the study of the structural organization and interaction of the major protein components of the virion: hemagglutinin (HA), transmembrane homotrimeric glycoprotein, and matrix protein M1 forming a layer under the lipid membrane. Among the tested proteolytic enzymes and enzymic preparations (thermolysin, trypsin, chymotrypsin, subtilisin Carlsberg, pronase, papain, and bromelain), the cysteine proteases bromelain and papain and the enzymic preparation pronase efficiently removed HA ectodomains, while chymotrypsin, trypsin, and subtilisin Carlsberg deleted only a part of them. An analysis by MALDI TOF mass spectrometry allowed us to locate the sites of HA hydrolysis by various enzymic preparations. Bromelain, papain, trypsin, and pronase split the polypeptide chain after the K177 residue located before the transmembrane domain (HA2 185–211). Subtilisin Carlsberg hydrolyzed the peptide bond at other neighboring points: after L178 (a major site) or V176. The hydrolytic activity of bromelain measured by a highly specific chromogenic substrate of cysteine proteases Glp-Phe-Ala-pNA was almost three times higher in the presence of 5 mM β-mercaptoethanol than in the presence of 50 mM. However, the complete removal of ectodomains of HA by the high-and low-activity enzyme required identical time intervals. In the absence of the reducing reagent, the removal of HA by bromelain proceeded a little more slowly and was accompanied by significant fragmentation of protein M1. The action of trans-epoxysuccinyl-L-leucylamido)(4-guanidino)butane (E-64), a specific inhibitor of cysteine proteases, and HgCl2 On the hydrolysis of proteins HA and M1 by bromelain was investigated.  相似文献   
9.
10.
Influenza virus hemagglutinin is a homotrimeric spike glycoprotein crucial for virions' attachment, membrane fusion, and assembly reactions. X-ray crystallography data are available for hemagglutinin ectodomains of various types/subtypes but not for anchoring segments. To get structural information for the linker and transmembrane regions of hemagglutinin, influenza A (H1-H16 subtypes except H8 and H15) and B viruses were digested with bromelain or subtilisin Carlsberg, either within virions or in non-ionic detergent micelles. Proteolytical fragments were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Within virions, hemagglutinins of most influenza A/Group-1 and type B virus strains were more susceptible to digestion with bromelain and/or subtilisin compared to A/Group-2 hemagglutinins. The cleavage sites were always located in the hemagglutinin linker sequence. In detergent, 1) bromelain cleaved hemagglutinin of every influenza A subtype in the linker region; 2) subtilisin cleaved Group-2 hemagglutinins in the linker region; 3) subtilisin cleaved Group-1 hemagglutinins in the transmembrane region; 4) both enzymes cleaved influenza B virus hemagglutinin in the transmembrane region. We propose that the A/Group-2 hemagglutinin linker and/or transmembrane regions are more tightly associated within trimers than type A/Group-1 and particularly type B ones. This hypothesis is underpinned by spatial trimeric structure modeling performed for transmembrane regions of both Group-1 and Group-2 hemagglutinin representatives. Differential S-acylation of the hemagglutinin C-terminal anchoring segment with palmitate/stearate residues possibly contributes to fine tuning of transmembrane trimer packing and stabilization since decreased stearate amount correlated with deeper digestion of influenza B and some A/Group-1 hemagglutinins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号