首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1510篇
  免费   133篇
  国内免费   1篇
  2024年   2篇
  2023年   2篇
  2022年   30篇
  2021年   51篇
  2020年   17篇
  2019年   30篇
  2018年   46篇
  2017年   34篇
  2016年   61篇
  2015年   99篇
  2014年   99篇
  2013年   100篇
  2012年   114篇
  2011年   114篇
  2010年   67篇
  2009年   81篇
  2008年   94篇
  2007年   99篇
  2006年   87篇
  2005年   82篇
  2004年   84篇
  2003年   73篇
  2002年   65篇
  2001年   9篇
  2000年   11篇
  1999年   16篇
  1998年   11篇
  1997年   2篇
  1996年   8篇
  1995年   8篇
  1994年   10篇
  1993年   4篇
  1992年   3篇
  1991年   2篇
  1985年   2篇
  1982年   2篇
  1973年   1篇
  1971年   1篇
  1966年   1篇
  1960年   1篇
  1959年   1篇
  1943年   1篇
  1942年   3篇
  1939年   1篇
  1936年   1篇
  1935年   1篇
  1931年   1篇
  1930年   1篇
  1919年   1篇
  1915年   1篇
排序方式: 共有1644条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
Phosphorylation of translation elongation factor 2(eEF-2) by a specific Ca2+/calmodulin-dependent eEF-2 kinase plays an important role in the regulation of protein synthesis in mammalian cells. We show here that an eEF-2 kinase similar to the mammalian enzyme is present in tissues of the amphibian Xenopus laevis. We investigated changes in the activity of eEF-2 kinase in extracts of Xenopus oocytes at different stages of oogenesis. The eEF-2 kinase activity was constant from stage I to stage IV of oogenesis, but dramatically decreased after stage IV. Extracts of fully grown stage-VI oocytes showed no eEF-2 kinase activity. However, when extracts were analyzed by two-dimensional gel electrophoresis, eEF-2 was found to be present mostly, if not exclusively, in the dephosphorylated form throughout oogenesis. It is suggested that eEF-2 kinase disappears late in oogenesis to make protein synthesis insensitive to changes in intracellular Ca2+ concentration. This may be important for the induction of meiotic maturation.  相似文献   
5.
6.
Investigations of biological effects of prolonged elevation of growth hormone in animals such as mice and rats require large amounts of mouse and rat growth hormone (GH) materials. As an alternative to scarce and expensive pituitary derived materials, both mouse and rat GH were expressed in NSO murine myeloma cells transfected with a vector containing the glutamine synthetase (GS) gene and two copies of mouse or rat GH cDNA. For optimal expression, the mouse GH vector also contained sequences for targeting integration by homologous recombination. Fed-batch culture processes for such clones were developed using a serum-free, glutamine-free medium and scaled up to 250 L production scale reactors. Concentrated solutions of proteins, amino acids and glucose were fed periodically to extend cell growth and culture lifetime, which led to an increase in the maximum viable cell concentration to 3.5×109 cells/L and an up to 10 fold increase in final mouse and rat rGH titers in comparison with batch cultures. For successful scale up, similar culture environmental conditions were maintained at different scales, and specific issues in large scale reactors such as balancing oxygen supply and carbon dioxide removal, were addressed. Very similar cell growth and protein productivity were obtained in the fed-batch cultures at different scales and in different production runs. The final mouse and rat rGH titers were approximately 580 and 240 mg/L, respectively. During fed-batch cultures, the cell growth stage transition was accompanied by a change in cellular metabolism. The specific glucose consumption rate decreased significantly after the transition from the growth to stationary stage, while lactate was produced in the exponential growth stage and became consumed in the stationary stage. This was roughly coincident with the beginning of ammonia and glutamate accumulation at the entry of cells into the stationary stage as the result of a reduced glutamine consumption and periodic nutrient additions.  相似文献   
7.
Summary When Clostridium acetobutylicum was grown in continuous culture under glucose limitation at neutral pH and varying dilution rates the only fermentation products formed were acetate, butyrate, carbon dioxide and molecular hydrogen. The Y glucose max and (Y ATP max ) gluc exp values were 48.3 and 23.8 dry weight/mol, respectively. Acetone and butanol were produced when the pH was decreased below 5.0 (optimum at pH 4.3). The addition of butyric acid (20 to 80 mM) to the medium with a pH of 4.3 resulted in a shift of the fermentation from acid, to solvent formation.A preliminary report of part of this work was presented at a symposium Trends in the Biology of Fermentations for Fuels and Chemicals held December 7–11, 1980, at Brookhaven National Laboratory, Upton, New York; Gottschalk and Bahl 1981  相似文献   
8.
We found that CKD712, an S enantiomer of YS49, strongly inhibited inducible nitric oxide synthase (iNOS) and NO induction but showed a weak inhibitory effect on cyclooxygenase-2 (COX-2) and PGE(2) induction in LPS-stimulated RAW 264.7 cells. We, therefore, investigated the molecular mechanism(s) responsible for this by using CKD712 in LPS-activated RAW264.7 cells. Treatment with either SP600125, a specific JNK inhibitor or TPCK, a NF-kappaB inhibitor, but neither ERK inhibitor PD98059 nor p38 inhibitor SB203580, significantly inhibited LPS-mediated iNOS and COX-2 induction. CKD712 inhibited NF-kappaB (p65) activity and translocation but failed to prevent JNK activation. However, AG490, a specific JAK-2/STAT-1 inhibitor, efficiently prevented LPS-mediated iNOS induction but not the induction of COX-2, and CKD712 completely blocked STAT-1 phosphorylation by LPS, suggesting that the NF-kappaB and JAK-2/STAT-1 pathways but not the JNK pathway are important for CKD712 action. Interestingly, CKD712 induced heme oxygenase 1 (HO-1) gene expression in LPS-treated cells. LPS-induced NF-kappaB and STAT-1 activation was partially prevented by HO-1 overexpression. Furthermore, HO-1 siRNA partly reversed not only the LPS-induced NF-kappaB activation and STAT-1 phosphorylation but also inhibition of these actions by CKD 712. Additionally, silencing HO-1 by siRNA prevented CKD712 from inhibiting iNOS expression but not COX-2. When examined plasma NO and PGE(2) levels and iNOS and COX-2 protein levels in lung tissues of mice injected with LPS (10 mg/kg), pretreatment with CKD712 greatly prevented NO and iNOS induction in a dose-dependent manner and slightly affected PGE(2) and COX-2 production as expected. Taken together, we conclude that inhibition of JAK-2/STAT-1 pathways by CKD 712 is critical for the differential inhibition of iNOS and COX-2 by LPS in vitro and in vivo where HO-1 induction also contributes to this by partially modulating JAK-2/STAT-1 pathways.  相似文献   
9.
While enteral nutrition is the basis for the critically ill, parenteral nutrition is often used when a sufficient enteral nutrition is not or not fully achievable. Lipids are a mainstay of caloric supply in both cases as they combine the provision of building blocks for the membranes and are precursors for function molecules including lipid mediators bearing the ability to influence immunity. Pro-inflammatory lipid mediators as prostaglandins and leukotrienes are generated from arachidonic acid (AA), a key member of the n-6 polyunsaturated fatty acids (PUFA). In contrast, lipid mediators derived from the n-3 fatty acids eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) may exhibit less inflammatory properties compared to their AA-derived counterparts. Furthermore, intercellular mediators as resolvins and protectins are generated from n-3 fatty acids. They induce the resolution of inflammation, hence the name resolution phase interaction product—resolvin. Modulating the amount of PUFA and the n-6/n-3 ratio were investigated as means to change the inflammatory response and improve the outcome of patients. Experimental data showed that n-3 fatty acids may improve acute lung injury and sepsis in animal models. Studies in patients undergoing major surgery with application of n-3 fatty acids demonstrated beneficial effects in terms of reduction of length of stay and infectious complications. Clinical data hints that this concept may also improve outcome in critically ill patients. Additionally, experimental and clinical data suggest that a reduction in n-6 PUFA may change the immune response. In conclusion, modulating the amount of PUFA, the n-6/n-3 ratio and the composition of lipid emulsions may prove to be a useful means to improve the outcome of critically ill patients.  相似文献   
10.
The kinetics of actin unfolding induced by guanidine hydrochloride has been studied. On the basis of obtained experimental data a new kinetic pathway of actin unfolding was proposed. We have shown that the transition from native to inactivated actin induced by guanidine hydrochloride (GdnHCl) passes through essential unfolding of the protein. This means that inactivated actin should be considered as the off-pathway species rather than an intermediate conformation between native and completely unfolded states of actin, as has been assumed earlier. The rate constants of the transitions that give rise to the inactivated actin were determined. At 1.0-2.0 M GdnHCl the value of the rate constant of the transition from native to essentially unfolded actin exceeds that of the following step of inactivated actin formation. It leads to the accumulation of essentially unfolded macromolecules early in the unfolding process, which in turn causes the minimum in the time dependencies of tryptophan fluorescence intensity, parameter A, characterizing the intrinsic fluorescence spectrum position, and tryptophan fluorescence anisotropy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号